
AI FinanceMaster App – Product Requirements
Document (PRD)

1. Executive Summary

AI FinanceMaster App is an AI-powered personal finance manager designed

for digitally savvy individuals (ages 18-45), freelancers, families, and small

business owners. The app connects securely to users’ bank, credit card, and

investment accounts, automatically categorizing expenses, detecting

subscriptions, and providing actionable insights to reduce monthly costs.

Key features include real-time alerts, bill reminders, subscription

management, and AI-generated plain-English financial summaries. The

platform integrates with Plaid, Stripe Billing, Yahoo Finance, OpenAI,

Twilio/WhatsApp, credit score APIs, and bill negotiation services. The

primary objective is to deliver tangible savings, peace of mind, and proactive

financial optimization, positioning the app as an “AI Money Copilot” that

empowers users to make informed, cost-saving decisions.

2. Problem Statement

Managing personal finances is complex and time-consuming, especially for

millennials, Gen Z, gig workers, and professionals juggling multiple accounts

and subscriptions. According to a 2023 Bankrate survey, 74% of Americans

have a budget, but 65% fail to stick to it. Users often lose money to duplicate

subscriptions, late fees, and suboptimal bill rates. Existing solutions (e.g.,

Mint, Rocket Money, Credit Karma) are fragmented, reactive, and lack

proactive, AI-driven recommendations. Users need a unified, intelligent

platform that automates financial tracking, identifies waste, and actively

helps reduce costs.

3. Solution Overview

AI FinanceMaster App is an integrated, AI-driven platform that aggregates

financial data in real time, categorizes expenses, manages subscriptions,

and delivers personalized, actionable recommendations. Unique features

include:

Automatic Expense Categorization & Budget Tracking

Subscription Detection & Management (with cancellation/negotiation)

Real-time Alerts & Bill Reminders (customizable, via in-app, WhatsApp,

SMS)

Natural Language Financial Summaries (OpenAI-powered)

Predictive Spend Warnings & Personalized Budgeting

Automated Bill Negotiation (via BillShark API or similar)

Continuous Learning from User Feedback

Downloadable PDF Reports

Compliance with PCI DSS & GDPR

The app’s proactive, action-oriented approach moves beyond passive

reporting, empowering users to optimize and automate their financial lives.

4. Stakeholder Analysis

Stakeholder Role/Responsibility Influence

End Users
Primary users; provide feedback

and drive adoption
High

Product Manager
Vision, roadmap, requirements,

prioritization
High

UX/UI Designer
User flows, onboarding,

accessibility, usability
High

Engineering

Team

Architecture, development,

integration, QA
High

Stakeholder Role/Responsibility Influence

Compliance

Officer

Ensures PCI DSS, GDPR, and

financial regulations
High

Marketing Team
User acquisition, onboarding,

retention campaigns
Medium

Customer

Support

User assistance, issue resolution,

feedback channel
Medium

Banking Partners
Data access via Plaid, Stripe,

Yahoo Finance
Medium

Regulatory

Bodies

Oversight, audits, compliance

enforcement
High

Bill Negotiation

Partners

Service integration, negotiation

workflow
Medium

5. User Personas

Persona 1: “Millennial Urban Professional”

Name: Alex Chen

Age/Role: 29, Product Manager

Demographics: Lives in NYC, works at a tech startup, $90k/year, single,

rents apartment

Goals: Automate budgeting, avoid late fees, optimize spending, grow

investments

Pain Points: Multiple accounts, forgotten subscriptions, lack of time for

manual tracking

Use Cases: Connects all accounts, receives real-time alerts, manages

subscriptions, reviews AI-generated summaries weekly

Tech Comfort: High; uses fintech apps, expects seamless UX

Behavioral Patterns: Engages with app daily, prefers in-app and

WhatsApp notifications, values actionable insights

Persona 2: “Freelancer/Gig Worker”

Name: Jordan Rivera

Age/Role: 34, Freelance Designer

Demographics: Los Angeles, variable income, multiple clients, uses

personal and business cards

Goals: Track irregular income/expenses, avoid overdrafts, minimize

recurring costs

Pain Points: Unpredictable cash flow, duplicate subscriptions, missed

bill payments

Use Cases: Uses subscription management to cancel unused services,

relies on predictive spend warnings, exports PDF reports for taxes

Tech Comfort: Medium-High; uses mobile banking, open to new tools if

intuitive

Behavioral Patterns: Checks app before major purchases, customizes

alert frequency, prefers SMS for urgent alerts

Persona 3: “Young Family CFO”

Name: Priya Patel

Age/Role: 38, Parent & Project Manager

Demographics: Chicago suburb, married, two kids, manages household

finances

Goals: Stay within family budget, avoid late fees, optimize household

bills

Pain Points: Multiple shared subscriptions, complex bill schedules, lack

of consolidated view

Use Cases: Sets up shared account access, receives bill reminders,

uses bill negotiation for utilities, reviews monthly summaries

Tech Comfort: Medium; uses apps for family coordination, values

security and privacy

Behavioral Patterns: Reviews weekly summaries, delegates some tasks

to spouse, prefers email and in-app notifications

Persona 4: “Small Business Owner”

Name: Samir Gupta

Age/Role: 45, Owner of a boutique marketing agency

Demographics: Boston, 10 employees, manages business and personal

finances

Goals: Streamline expense tracking, separate business/personal costs,

improve cash flow

Pain Points: Manual reconciliation, missed business expense

deductions, fragmented tools

Use Cases: Connects business accounts, categorizes expenses,

downloads reports for accountant, uses AI recommendations for cost

savings

Tech Comfort: Medium; uses accounting software, expects integrations

Behavioral Patterns: Monthly deep dives, prefers desktop access,

values PDF exports

6. Technical Requirements

Architecture Alignment:

Frontend: React 18.x (SPA), Material-UI, Redux Toolkit for state

management

Backend: Node.js 18.x with Express, RESTful API design, OpenAI API

integration

Infrastructure: AWS (EC2, RDS PostgreSQL 15+, S3 for document

storage), Docker containers, Terraform for IaC

Security: OAuth 2.0 (Plaid, Stripe), JWT for session management, 256-

bit encryption (TLS 1.3), PCI DSS & GDPR compliance

Integration:

Plaid API (banking data)

Stripe Billing API (subscription detection)

Yahoo Finance API (investment tracking)

OpenAI API (NLP summaries)

Twilio/WhatsApp API (alerts/notifications)

Credit Score API (risk analysis)

BillShark API (bill negotiation)

Database: PostgreSQL 15+ (see Data Architecture for schema)

Component Architecture:

Auth Service

Account Aggregation Service

AI Recommendation Engine

Notification Service

Subscription Management Module

Bill Negotiation Module

Reporting Service

Performance: Support 10,000 concurrent users, <1s response time for

dashboard

Configuration: Feature toggles for demo mode, alert customization, and

AI feedback loop

Frontend:

React 18.x, Material-UI, Redux Toolkit, Axios for API calls

Responsive web app (mobile-first), PWA support

Accessibility: WCAG 2.1 AA compliance

Backend:

Node.js 18.x, Express, RESTful API, OpenAI SDK

Plaid, Stripe, Yahoo Finance, Twilio, BillShark SDKs

Rate limiting (API Gateway), centralized logging (AWS CloudWatch)

Infrastructure:

AWS EC2 (auto-scaling), RDS PostgreSQL, S3, CloudFront

Docker, Terraform, CI/CD (GitHub Actions)

Security:

End-to-end encryption (TLS 1.3), PCI DSS controls, GDPR data

minimization

2FA (email/SMS), audit logging, role-based access control

Integration:

OAuth 2.0 for third-party APIs

Webhooks for real-time updates (Plaid, Stripe, Twilio)

7. Non-Functional Requirements

Attribute Requirement

Performance
<1s dashboard load, <2s for report generation,

99.99% uptime, 10,000 concurrent users

Scalability
Horizontal scaling (AWS Auto Scaling), stateless

microservices

Reliability
99.99% uptime, automatic failover (multi-AZ), daily

backups

Availability
Multi-region AWS deployment, health checks, blue-

green deployment

Security
PCI DSS, GDPR, 256-bit encryption, regular

penetration testing, 2FA, audit logs

Privacy
Data minimization, user consent management, right

to be forgotten, data masking

Compliance PCI DSS, GDPR, CCPA, SOC 2 Type II

Accessibility WCAG 2.1 AA

Maintainability
Modular codebase, CI/CD pipeline, automated tests,

clear documentation

Usability
NPS > 60, CSAT > 4.5/5, onboarding completion >

80%

8. Success Metrics & KPIs

Metric Target/Goal
Measurement

Method

User Onboarding

Completion Rate
>80%

Analytics on

onboarding flow

Monthly Active Users

(MAU)

50,000+ in 12

months
User activity logs

Subscription

Cancellations Initiated
10,000/month

Subscription

module logs

Bill Negotiation

Success Rate

>30% of initiated

requests

BillShark API

callbacks

Average Monthly

Savings per User
$50+

User-reported +

system calc

Alert Engagement

Rate
>60%

Notification click-

throughs

User Feedback

Submission Rate

>20% of active

users

Feedback module

analytics

NPS (Net Promoter

Score)
>60 In-app survey

CSAT (Customer

Satisfaction)
>4.5/5

Post-interaction

survey

System Uptime 99.99% AWS CloudWatch

9. Risks

Risk Category Description Mitigation Strategy

Security Breach
Exposure of sensitive

financial data

PCI DSS controls,

regular audits,

encryption, 2FA

Risk Category Description Mitigation Strategy

Regulatory

Non-

Compliance

Failure to meet PCI DSS,

GDPR, CCPA, SOC 2

Continuous

compliance

monitoring, legal

reviews

Market

Adoption

Low user adoption or

engagement

User-centric

onboarding, demo

mode, targeted

marketing

System

Performance

Downtime or slow

response under load

Auto-scaling, load

testing, AWS multi-

region

Third-Party API

Failure

Outages or changes in

Plaid, Stripe, BillShark,

etc.

Graceful degradation,

fallback flows, API

monitoring

Data Quality

Inaccurate

categorization or

recommendations

User feedback loop,

AI retraining, manual

correction

User Trust
Users hesitant to

connect accounts

Transparent security

messaging, demo

mode, privacy

Integration

Complexity

Issues with integrating

multiple APIs

Modular architecture,

robust API versioning

10. Assumptions

Users are digitally literate (primary target: 18-45, urban, tech-savvy)

Plaid, Stripe, Yahoo Finance, BillShark, and other APIs provide reliable,

stable integrations

Users will connect at least one financial account for full functionality

Users value transparency and control (approval required for automated

actions)

PCI DSS & GDPR compliance is mandatory for all data flows

User feedback will be sufficient to improve AI recommendations

Demo mode will increase conversion rates to full account creation

AWS infrastructure is available and scalable as required

Users prefer a mix of in-app and external notifications

(WhatsApp/SMS)

Bill negotiation partners (e.g., BillShark) are available in target markets

11. Compliance & Regulatory Requirements

PCI DSS: End-to-end encryption, access controls, quarterly ASV scans,

annual assessments, incident response plan, data masking, no storage of

sensitive authentication data after authorization ([PCI-DSS Compliance]

[1])

GDPR: User consent, right to be forgotten, data minimization, breach

notification, privacy policy ([Blockchain Technology in Financial Services]

[2])

CCPA: California user data rights, opt-out mechanisms

SOC 2 Type II: Security, availability, processing integrity, confidentiality,

privacy

Other: Regular compliance audits, legal review of all integrations,

privacy policy disclosures

12. Security & Privacy Requirements

Data Encryption: 256-bit AES for data at rest, TLS 1.3 for data in transit

Authentication: OAuth 2.0 for third-party APIs, JWT for sessions, 2FA

for user logins

Access Control: Role-based access, least privilege, unique user IDs

Audit Logging: All access and actions on sensitive data logged and

monitored

Incident Response: Documented plan, regular drills, rapid breach

notification

Data Minimization: Only store data strictly necessary for functionality

User Consent: Explicit opt-in for data collection, clear privacy controls

Data Masking: PAN masking, no storage of sensitive authentication

data post-authorization

Vulnerability Management: Regular scans, patch management,

penetration testing

13. Integration Requirements

Plaid API: Secure banking data aggregation (OAuth 2.0)

Stripe Billing API: Subscription detection and management

Yahoo Finance API: Investment account aggregation and tracking

OpenAI API: Natural language summaries and recommendations

Twilio/WhatsApp API: Real-time alerts and notifications

Credit Score API: Credit risk analysis and monitoring

BillShark API: Automated bill negotiation

Webhooks: For real-time updates from Plaid, Stripe, Twilio

API Gateway: Centralized management, rate limiting, monitoring

OAuth 2.0: For all third-party integrations

14. Data Architecture

Architecture Alignment:

Database: PostgreSQL 15+

Schema:

users (id, email, hashed_password, created_at, last_login,

consent_status, notification_preferences)

accounts (id, user_id, provider, account_type,

account_number_masked, balance, currency, last_synced)

transactions (id, account_id, date, amount, currency, merchant,

category, is_subscription, is_unusual, notes)

subscriptions (id, user_id, merchant, amount, frequency, status,

detected_on, last_action)

bills (id, user_id, merchant, due_date, amount, status,

negotiation_status)

alerts (id, user_id, type, message, sent_via, sent_at, read_at)

ai_recommendations (id, user_id, recommendation_type, content,

created_at, feedback)

feedback (id, user_id, recommendation_id, rating, comment,

submitted_at)

reports (id, user_id, period, pdf_url, generated_at)

Relationships:

users 1:N accounts , subscriptions , bills , alerts , ai_recommendations ,

feedback , reports

accounts 1:N transactions

Indexes:

On user_id for all tables, on date for transactions , on status for

subscriptions and bills

Storage:

S3 for PDF reports and document storage

Data Flow:

Plaid/Stripe/Yahoo Finance → Account Aggregation Service →
Database

AI Recommendation Engine → ai_recommendations → User Feedback

→ Retraining pipeline

Notification Service → alerts → Twilio/WhatsApp/SMS

Reporting Service → reports → S3

15. API Specifications

API Versioning: /api/v1/

Authentication: OAuth 2.0 (third-party), JWT (user sessions)

Rate Limiting: 500 requests/min/user

Error Handling: Standardized error codes, descriptive messages

All endpoints return JSON; all request bodies validated with Joi

Feature-to-Endpoint Mapping

User Authentication & Onboarding

POST /api/v1/auth/register

Request: { email, password }

Response: { userId, token }

POST /api/v1/auth/login

Request: { email, password }

Response: { userId, token }

POST /api/v1/auth/logout

Request: { token }

Response: { success }

POST /api/v1/auth/forgot-password

Request: { email }

Response: { success }

GET /api/v1/demo-mode

Response: { features: [...] }

Account Aggregation

POST /api/v1/accounts/connect

Request: { provider, oauth_token }

Response: { accountId, status }

GET /api/v1/accounts

Response: { accounts: [...] }

DELETE /api/v1/accounts/:id

Response: { success }

GET /api/v1/accounts/:id/transactions

Query: ?from=YYYY-MM-DD&to=YYYY-MM-DD

Response: { transactions: [...] }

Expense Categorization & Budget Tracking

GET /api/v1/transactions

Query: ?category=food&from=YYYY-MM-DD

Response: { transactions: [...] }

POST /api/v1/transactions/categorize

Request: { transactionId, category }

Response: { success }

GET /api/v1/budgets

Response: { budgets: [...] }

POST /api/v1/budgets

Request: { category, amount, period }

Response: { budgetId }

PUT /api/v1/budgets/:id

Request: { amount }

Response: { success }

Subscription Detection & Management

GET /api/v1/subscriptions

Response: { subscriptions: [...] }

POST /api/v1/subscriptions/cancel

Request: { subscriptionId }

Response: { status, confirmationRequired }

POST /api/v1/subscriptions/confirm-cancellation

Request: { subscriptionId, userConfirmation }

Response: { status }

GET /api/v1/subscriptions/duplicates

Response: { duplicates: [...] }

Bill Negotiation

GET /api/v1/bills

Response: { bills: [...] }

POST /api/v1/bills/negotiate

Request: { billId }

Response: { negotiationStatus }

GET /api/v1/bills/negotiation-status/:id

Response: { status, savings }

Alerts & Notifications

GET /api/v1/alerts

Response: { alerts: [...] }

POST /api/v1/alerts/preferences

Request: { type, channel, frequency }

Response: { success }

POST /api/v1/alerts/mark-read

Request: { alertId }

Response: { success }

AI Recommendations & Summaries

GET /api/v1/ai/recommendations

Response: { recommendations: [...] }

POST /api/v1/ai/feedback

Request: { recommendationId, rating, comment }

Response: { success }

GET /api/v1/ai/summary

Response: { summary: "Your finances are on track..." }

Investment Tracking

GET /api/v1/investments

Response: { investments: [...] }

GET /api/v1/investments/performance

Response: { performance: [...] }

Credit Score Monitoring

GET /api/v1/credit-score

Response: { score, factors }

Reporting

GET /api/v1/reports

Response: { reports: [...] }

POST /api/v1/reports/generate

Request: { period }

Response: { reportId, pdfUrl }

User Feedback

POST /api/v1/feedback

Request: { type, message }

Response: { success }

Example Request/Response Schema

// POST /api/v1/ai/feedback
{
 "recommendationId": "rec_123456",
 "rating": 4,
 "comment": "Helpful but missed one subscription."
}

// Response
{
 "success": true
}

16. Testing Strategy

Unit Testing: Jest (backend), React Testing Library (frontend)

Integration Testing: Supertest (API), mock third-party APIs

E2E Testing: Cypress, Selenium (critical flows: onboarding, account

linking, subscription management)

Performance Testing: JMeter, k6 (simulate 10,000 concurrent users)

Security Testing: OWASP ZAP, regular penetration tests, dependency

scanning

Accessibility Testing: axe-core, manual WCAG 2.1 AA checks

Regression Testing: Automated CI/CD pipeline triggers on each release

17. Deployment Strategy

Phased Rollout:

Internal alpha → closed beta → public beta → GA

Blue-Green Deployments:

Zero-downtime, quick rollback

Rollback Procedures:

Automated rollback on failed health checks

CI/CD:

GitHub Actions, AWS CodeDeploy

Canary Releases:

Gradual feature exposure, monitor error rates

18. Monitoring & Observability

Metrics:

API latency, error rates, user activity, third-party API health,

notification delivery

Dashboards:

Grafana, AWS CloudWatch dashboards for real-time monitoring

Alerts:

PagerDuty integration for critical errors, anomaly detection

Logging:

Centralized (AWS CloudWatch), structured logs, audit trails

User Behavior Analytics:

Mixpanel/Amplitude for onboarding, feature usage, funnel analysis

19. Timeline & Phases

Phase Deliverables Timeline Dependencies

Discovery &

Design

Wireframes, user

flows, technical

architecture

1 month
Stakeholder

input

Phase Deliverables Timeline Dependencies

MVP Build

Core features:

onboarding,

aggregation, alerts

2

months

Plaid, Stripe

integration

Beta

Release

Subscription mgmt,

bill negotiation, AI

summaries

1 month
OpenAI,

BillShark API

Public

Launch

Investment, credit,

reporting, feedback

loop

1 month All integrations

Continuous

Delivery

Feature

enhancements, AI

retraining,

compliance

Ongoing
User feedback,

compliance

20. Resource Requirements

Team Composition:

1 Product Manager

2 UX/UI Designers (web/mobile, accessibility)

4 Backend Engineers (Node.js, integrations)

3 Frontend Engineers (React, PWA)

2 QA Engineers (automation, security)

1 DevOps Engineer (AWS, CI/CD, monitoring)

1 Compliance Officer (PCI DSS, GDPR)

1 Customer Support Lead

Skills Needed:

Fintech integrations, AI/ML (OpenAI), security, UX for finance,

accessibility, AWS infrastructure

Budget Considerations:

Third-party API fees (Plaid, Stripe, OpenAI, BillShark)

AWS hosting and scaling

Compliance audits and penetration testing

Marketing and user acquisition

21. Change Management Plan

User Adoption:

In-app guided tours, demo mode, onboarding tutorials

Training:

Knowledge base, video walkthroughs, FAQ

Communication:

Regular release notes, in-app announcements, email newsletters

Feedback Loop:

In-app feedback forms, NPS surveys, user interviews

Support:

Live chat, ticketing system, escalation procedures

References:

All compliance and technical requirements are aligned with [PCI-DSS

Compliance][1] and [Blockchain Technology in Financial Services][2]

knowledge base entries.

User personas, flows, and features are directly extracted and

synthesized from the provided user answers and project context.

End of PRD – AI FinanceMaster App

