Al FinanceMaster App - Product Requirements
Document (PRD)

1. Executive Summary

Al FinanceMaster App is an Al-powered personal finance manager designed
for digitally savvy individuals (ages 18-45), freelancers, families, and small
business owners. The app connects securely to users’ banR, credit card, and
investment accounts, automatically categorizing expenses, detecting
subscriptions, and providing actionable insights to reduce monthly costs.
IKey features include real-time alerts, bill reminders, subscription
management, and Al-generated plain-English financial summaries. The
platform integrates with Plaid, Stripe Billing, Yahoo Finance, OpenAl,
Twilio/WhatsApp, credit score APIs, and bill negotiation services. The
primary objective is to deliver tangible savings, peace of mind, and proactive
financial optimization, positioning the app as an “Al Money Copilot” that

empowers users to make informed, cost-saving decisions.

2. Problem Statement

Managing personal finances is complex and time-consuming, especially for
millennials, Gen Z, gig worRers, and professionals juggling multiple accounts
and subscriptions. According to a 2023 Bankrate survey, 74% of Americans
have a budget, but 65% fail to stick to it. Users often lose money to duplicate
subscriptions, late fees, and suboptimal bill rates. Existing solutions (e.qg.,
Mint, RocRet Money, Credit Karma) are fragmented, reactive, and lack
proactive, Al-driven recommendations. Users need a unified, intelligent
platform that automates financial tracRing, identifies waste, and actively

helps reduce costs.

3. Solution Overview

Al FinanceMaster App is an integrated, Al-driven platform that aggregates
financial data in real time, categorizes expenses, manages subscriptions,
and delivers personalized, actionable recommendations. Unique features

include:

e Automatic Expense Categorization & Budget Tracking
e Subscription Detection & Management (with cancellation/negotiation)

¢ Real-time Alerts & Bill Reminders (customizable, via in-app, WhatsApp,
SMS)

« Natural Language Financial Summaries (OpenAl-powered)
¢ Predictive Spend Warnings & Personalized Budgeting

* Automated Bill Negotiation (via BillShark API or similar)

e Continuous Learning from User Feedback
 Downloadable PDF Reports

e Compliance with PCI DSS & GDPR

The app’s proactive, action-oriented approach moves beyond passive

reporting, empowering users to optimize and automate their financial lives.

4. StaReholder Analysis

Stakeholder Role/Responsibility Influence

Primary users; provide feedback _
End Users)) High
and drive adoption

Vision, roadmap, requirements, _
Product Manager o High
prioritization

_ User flows, onboarding, .
UX/UI Designer o . High
accessibility, usability

Engineering Architecture, development, Hiah
[
Team integration, QA g

Stakeholder Role/Responsibility Influence
Compliance Ensures PCI DSS, GDPR, and Hiah
[
Officer financial regulations d
) User acquisition, onboarding,)
MarReting Team) i Medium
retention campaigns
Customer User assistance, issue resolution,]
Medium
Support feedback channel
_ Data access via Plaid, Stripe, _
BanRing Partners _ Medium
Yahoo Finance
Regulatory Oversight, audits, compliance _
] High
Bodies enforcement
Bill Negotiation Service integration, negotiation .
Medium

Partners

workflow

5. User Personas

Persona 1: “Millennial Urban Professional”
¢ Name: Alex Chen
¢ Age/Role: 29, Product Manager

¢ Demographics: Lives in NYC, works at a tech startup, $90R/year, single,
rents apartment

¢ Goals: Automate budgeting, avoid late fees, optimize spending, grow
investments

¢ Pain Points: Multiple accounts, forgotten subscriptions, lack of time for
manual tracking

e Use Cases: Connects all accounts, receives real-time alerts, manages
subscriptions, reviews Al-generated summaries weeRly

o Tech Comfort: High; uses fintech apps, expects seamless UX

¢ Behavioral Patterns: Engages with app daily, prefers in-app and
WhatsApp notifications, values actionable insights

Persona 2: “"Freelancer/Gig Worker”
 Name: Jordan Rivera
 Age/Role: 34, Freelance Designer

 Demographics: Los Angeles, variable income, multiple clients, uses
personal and business cards

e Goals: TracR irregular income/expenses, avoid overdrafts, minimize
recurring costs

e Pain Points: Unpredictable cash flow, duplicate subscriptions, missed
bill payments

¢ Use Cases: Uses subscription management to cancel unused services,
relies on predictive spend warnings, exports PDF reports for taxes

e Tech Comfort: Medium-High; uses mobile banking, open to new tools if
intuitive

o Behavioral Patterns: Checks app before major purchases, customizes
alert frequency, prefers SMS for urgent alerts

Persona 3: “Young Family CFO"
¢ Name: Priya Patel

e Age/Role: 38, Parent & Project Manager

¢ Demographics: Chicago suburb, married, two Rids, manages household
finances

e Goals: Stay within family budget, avoid late fees, optimize household
bills

¢ Pain Points: Multiple shared subscriptions, complex bill schedules, lack
of consolidated view

e Use Cases: Sets up shared account access, receives bill reminders,
uses bill negotiation for utilities, reviews monthly summaries

¢ Tech Comfort: Medium; uses apps for family coordination, values
security and privacy

¢ Behavioral Patterns: Reviews weekly summaries, delegates some tasks
to spouse, prefers email and in-app notifications
Persona 4: “Small Business Owner”

¢ Name: Samir Gupta

* Age/Role: 45, Owner of a boutique marketing agency

¢ Demographics: Boston, 10 employees, manages business and personal
finances

¢ Goals: Streamline expense tracking, separate business/personal costs,
improve cash flow

¢ Pain Points: Manual reconciliation, missed business expense
deductions, fragmented tools

¢ Use Cases: Connects business accounts, categorizes expenses,
downloads reports for accountant, uses Al recommendations for cost
savings

o Tech Comfort: Medium; uses accounting software, expects integrations

» Behavioral Patterns: Monthly deep dives, prefers desktop access,
values PDF exports

6. Technical Requirements

Architecture Alignment:
e Frontend: React 18.x (SPA), Material-Ul, Redux ToolRit for state
management

e Backend: Node.js 18 x with Express, RESTful APl design, OpenAl API
integration

e Infrastructure: AWS (EC2, RDS PostgreSQL 15+, S3 for document
storage), DocRer containers, Terraform for laC

e Security: OAuth 2.0 (Plaid, Stripe), JINT for session management, 256-
bit encryption (TLS 1.3), PCI DSS & GDPR compliance

¢ Integration:
e Plaid API (banRing data)

e Stripe Billing APl (subscription detection)
¢ Yahoo Finance API (investment tracRing)

e OpenAl API (NLP summaries)

e Twilio/WhatsApp API (alerts/notifications)
e Credit Score API (risk analysis)

e BillShark API (bill negotiation)

o Database: PostgreSQL 15+ (see Data Architecture for schema)

e Component Architecture:
e Auth Service

e Account Aggregation Service

¢ Al Recommendation Engine

¢ Notification Service

e Subscription Management Module
¢ Bill Negotiation Module

¢ Reporting Service

e Performance: Support 10,000 concurrent users, <Is response time for

dashboard

» Configuration: Feature toggles for demo mode, alert customization, and

Al feedbacR loop
Frontend:

¢ React 18.x, Material-Ul, Redux ToolRit, Axios for API calls
e Responsive web app (mobile-first), PWA support

e Accessibility: WCAG 2.1 AA compliance
Backend:

e Node.js 18.x, Express, RESTful API, OpenAl SDK
e Plaid, Stripe, Yahoo Finance, Twilio, BillShark SDKs

¢ Rate limiting (APl Gateway), centralized logging (AWS CloudWatch)
Infrastructure:

e AWS EC2 (auto-scaling), RDS PostgreSQL, S3, CloudFront
e DocRer, Terraform, CI/CD (GitHub Actions)

Security:

¢ End-to-end encryption (TLS 1.3), PCI DSS controls, GDPPR data
minimization

e 2FA (email/SMS), audit logging, role-based access control

Integration:

e OAuth 2.0 for third-party APls

¢ WebhooRs for real-time updates (PPlaid, Stripe, Twilio)

7. Non-Functional Requirements

Attribute

Performance

Scalability

Reliability

Availability

Security

Privacy

Compliance

Accessibility

Maintainability

Usability

Requirement

<ls dashboard load, <2s for report generation,
99.99% uptime, 10,000 concurrent users

Horizontal scaling (AWS Auto Scaling), stateless
microservices

090.99% uptime, automatic failover (multi-AZ), daily
bacRups

Multi-region AWS deployment, health checRs, blue-
green deployment

PCI DSS, GDPR, 256-bit encryption, regular
penetration testing, 2FA, audit logs

Data minimization, user consent management, right
to be forgotten, data masking

PCI DSS, GDPR, CCPA, SOC 2 Type |l
WCAG 2.1 AA

Modular codebase, CI/CD pipeline, automated tests,
clear documentation

NPS > 60, CSAT > 4.5/5, onboarding completion >
80%

8. Success Metrics & KPIs

Metric

User Onboarding

Completion Rate

Monthly Active Users

(MAU)

Subscription

Target/Goal

>80%

50,000+in 12
months

10,000/month

Cancellations Initiated

Bill Negotiation
Success Rate

Average Monthly
Savings per User

Alert Engagement

Rate

User Feedback

Submission Rate

NPS (Net Promoter

Score)

CSAT (Customer
Satisfaction)

System Uptime

9. Risks

Risk Category

Security Breach

>30% of initiated
requests

$50+

>607%

>20% of active
users

>60

>4.5/5

99.99%

Description

Exposure of sensitive
financial data

Measurement
Method

Analytics on
onboarding flow

User activity logs

Subscription
module logs

BillShark API
callbacks

User-reported +
system calc

Notification click-
throughs

Feedback module
analytics

In-app survey

Post-interaction
survey

AWS CloudWatch

Mitigation Strategy

[PCl DSS controls,
regular audits,
encryption, 2FA

Risk Category

Regulatory
Non-
Compliance

MarRet
Adoption

System
Performance

Third-Party API
Failure

Data Quality

User Trust

Integration
Complexity

10. Assumptions

Description

Failure to meet PCI DSS,
GDPR, CCPA, SOC 2

Low user adoption or
engagement

Downtime or slow
response under load

Outages or changes in
Plaid, Stripe, BillSharR,
etc.

Inaccurate
categorization or
recommendations

Users hesitant to
connect accounts

Issues with integrating
multiple APls

Mitigation Strategy

Continuous
compliance
monitoring, legal
reviews

User-centric
onboarding, demo
mode, targeted
marketing

Auto-scaling, load
testing, AWS multi-
region

Graceful degradation,
fallback flows, API
monitoring

User feedbacR loop,
Al retraining, manual
correction

Transparent security
messaging, demo
mode, privacy

Modular architecture,
robust API versioning

e Users are digitally literate (primary target: 18-45, urban, tech-savvy)

e Plaid, Stripe, Yahoo Finance, BillSharR, and other APls provide reliable,

stable integrations

e Users will connect at least one financial account for full functionality

e Users value transparency and control (approval required for automated

actions)

e [PCIDSS & GDPR compliance is mandatory for all data flows

o User feedback will be sufficient to improve Al recommendations
 Demo mode will increase conversion rates to full account creation
o AWS infrastructure is available and scalable as required

o Users prefer a mix of in-app and external notifications
(WhatsApp/SMS)

¢ Bill negotiation partners (e.g., BillSharR) are available in target markets

11. Compliance & Regulatory Requirements

e PCIDSS: End-to-end encryption, access controls, quarterly ASV scans,
annual assessments, incident response plan, data masRking, no storage of
sensitive authentication data after authorization ([PCI-DSS Compliance]

(1)

e GDPR: User consent, right to be forgotten, data minimization, breach
notification, privacy policy ([Blockchain Technology in Financial Services]

[2])

e CCPA: California user data rights, opt-out mechanisms

e SOC 2 Type ll: Security, availability, processing integrity, confidentiality,
privacy

e Other: Regular compliance audits, legal review of all integrations,
privacy policy disclosures

12. Security & Privacy Requirements

o Data Encryption: 256-bit AES for data at rest, TLS 1.3 for data in transit

e Authentication: OAuth 2.0 for third-party APIs, JWT for sessions, 2FA
for user logins

e Access Control: Role-based access, least privilege, unique user IDs

¢ Audit Logging: All access and actions on sensitive data logged and
monitored

¢ Incident Response: Documented plan, regular drills, rapid breach
notification

e Data Minimization: Only store data strictly necessary for functionality

» User Consent: Explicit opt-in for data collection, clear privacy controls

« Data MasRing: PAN masking, no storage of sensitive authentication
data post-authorization

¢ Vulnerability Management: Regular scans, patch management,
penetration testing

13. Integration Requirements

¢ Plaid API: Secure banking data aggregation (OAuth 2.0)

e Stripe Billing API: Subscription detection and management

¢ Yahoo Finance API: Investment account aggregation and tracking
e OpenAl API: Natural language summaries and recommendations
o Twilio/WhatsApp API: Real-time alerts and notifications

e Credit Score API: Credit risk analysis and monitoring

e BillShark API: Automated bill negotiation

o WebhooRks: For real-time updates from Plaid, Stripe, Twilio

e API Gateway: Centralized management, rate limiting, monitoring

e OAuth 2.0: For all third-party integrations

14. Data Architecture

Architecture Alignment:

o Database: PostgreSQL 15+

e Schema:
e users (id, email, hashed_password, created_at, last_login,
consent_status, notification_preferences)

e accounts (id, user_id, provider, account_type,
account_number_masked, balance, currency, last_synced)

e transactions (id, account_id, date, amount, currency, merchant,
category, is_subscription, is_unusual, notes)

e subscriptions (id, user_id, merchant, amount, frequency, status,
detected_on, last_action)

e bills (id, user_id, merchant, due_date, amount, status,
negotiation_status)

e alerts (id, user_id, type, message, sent_via, sent_at, read_at)

e ai_recommendations (id, user_id, recommendation_type, content,
created_at, feedbacR)

e feedback (id, user_id, recommendation_id, rating, comment,
submitted_at)

e reports (id, user_id, period, pdf_url, generated_at)

e Relationships:
e users I:N accounts , subscriptions , bills , alerts , ai recommendations ,

feedback , reports

e accounts I:N transactions

¢ Indexes:
e On user id forall tables, on date for transactions , 0N status for

subscriptions and bills

e Storage:
e S3 for PDF reports and document storage

« Data Flow:
e Plaid/Stripe/Yahoo Finance — Account Aggregation Service —
Database

¢ Al Recommendation Engine — ai_recommendations — User FeedbacRk
— Retraining pipeline

e Notification Service — alerts — Twilio/WhatsApp/SMS

e Reporting Service — reports — S3

15. APl Specifications

APl Versioning: /api/vl/

Authentication: OAuth 2.0 (third-party), JWT (user sessions)
Rate Limiting: 500 requests/min/user

Error Handling: Standardized error codes, descriptive messages

All endpoints return JSON; all request bodies validated with Joi

Feature-to-Endpoint Mapping

User Authentication & Onboarding

e POST /api/v1/auth/register
Request: {email, password }

Response: { userld, token }

e POST /api/v1/auth/login
Request: {email, password }

Response: { userld, token }

e POST /api/v1/auth/logout
Request: {token }

Response: {success }

e POST /api/v1/auth/forgot-password

Request: {email }

Response: {success }

e GET /api/vl/demo-mode
Response: { features:[...]}

Account Aggregation

POST /api/v1/accounts/connect

Request: { provider, oauth token }

Response: { accountld, status }

e GET /api/vl/accounts

Response: {accounts:[..]}

e DELETE /api/vl/accounts/:id
Response: {success }

e GET /api/v1l/accounts/:id/transactions

Query: ?from=YYYY-MM-DD&to=YYYY-MM-DD

Response: { transactions: [...]}

Expense Categorization & Budget TracRing

e GET /api/vl/transactions
e Query: ?category=food&from=YYYY-MM-DD

Response: { transactions: [...]}

e POST /api/vl/transactions/categorize

Request: { transactionld, category }

Response: {success }

e GET /api/vl/budgets
Response: {budgets:[...]}

e POST /api/vl/budgets

Request: { category, amount, period }

Response: {budgetld }

e PUT /api/vl/budgets/:id
Request: {amount }

Response: {success }

Subscription Detection & Management

e GET /api/vl/subscriptions

Response: { subscriptions: [...]}

e POST /api/v1/subscriptions/cancel

Request: { subscriptionld }

Response: { status, confirmationRequired }

e POST /api/v1/subscriptions/confirm-cancellation

Request: { subscriptionld, userConfirmation }

Response: {status }

e GET /api/v1/subscriptions/duplicates

Response: { duplicates: [...] }

Bill Negotiation
e GET /api/vl/bills
e Response: {bills:[..]}
e POST /api/v1/bills/negotiate
e Request: {billld}

e [Response: { negotiationStatus }

e GET /api/vl/bills/negotiation-status/:id

e [Response: {status, savings }

Alerts & Notifications

e GET /api/vl/alerts
Response: {alerts:[...]}

e POST /api/vl/alerts/preferences

Request: { type, channel, frequency }

Response: {success }

e POST /api/vl/alerts/mark-read
Request: {alertld }

Response: {success }

Al Recommendations & Summaries

e GET /api/vl/ai/recommendations

Response: {recommendations: [...] }

e POST /api/vl/ai/feedback

Request: {recommendationld, rating, comment }

Response: {success }

e GET /api/vl/ai/summary

Investment TracRing
e GET /api/vl/investments

e Response: {investments:[...]}

e GET /api/vl/investments/performance
e Response: {performance:][...]}
Credit Score Monitoring
e GET /api/vl/credit-score
e [Response: {score, factors }
Reporting
e GET /api/vl/reports

e Response: {reports:[..]}

e POST /api/v1/reports/generate

Response: { summary: "Your finances are on track..." }

e Request: {period}

e Response: {reportld, pdfUrl }

User Feedback

e POST /api/vl/feedback
e Request: {type, message }

e Response: {success }

Example Request/Response Schema

"recommendationId": "rec_123456",
"rating": 4,
"comment": "Helpful but missed one subscription."

""'success":

16. Testing Strategy

e Unit Testing: Jest (backend), React Testing Library (frontend)
¢ Integration Testing: Supertest (AlPl), mock third-party APls

e E2E Testing: Cypress, Selenium (critical flows: onboarding, account
linRing, subscription management)

¢ Performance Testing: JMeter, R6 (simulate 10,000 concurrent users)

e Security Testing: OWASP ZAP, regular penetration tests, dependency
scanning

¢ Accessibility Testing: axe-core, manual WCAG 2.1 AA checks

¢ Regression Testing: Automated C|/CD pipeline triggers on each release

17. Deployment Strategy

¢ [Phased Rollout:

e Internal alpha — closed beta — public beta — GA

Blue-Green Deployments:

e Zero-downtime, quicR rollbacR

Rollback Procedures:

e Automated rollback on failed health checks

Cl/CD:

e GitHub Actions, AWS CodeDeploy

Canary Releases:

e Gradual feature exposure, monitor error rates

18. Monitoring & Observability

Metrics:

e APl latency, error rates, user activity, third-party AP| health,

notification delivery

Dashboards:

e Grafana, AWS CloudWatch dashboards for real-time monitoring

Alerts:

e [PagerDuty integration for critical errors, anomaly detection

Logging:

e Centralized (AWS CloudWatch), structured logs, audit trails

User Behavior Analytics:

e Mixpanel/Amplitude for onboarding, feature usage, funnel analysis

19. Timeline & Phases

Phase

Discovery &
Design

Deliverables Timeline Dependencies

Wireframes, user
StakReholder

flows, technical 1 month]
input

architecture

Phase Deliverables

Core features:
MVP Build onboarding,
aggregation, alerts

Subscription mgmt,

Beta] o

bill negotiation, Al
Release)

summaries

] Investment, credit,

Public i

reporting, feedback
Launch

loop

Feature
Continuous enhancements, Al
Delivery retraining,

compliance

20. Resource Requirements

¢ Team Composition:

1 Product Manager

Timeline

months

I month

I month

Ongoing

2 UX/UI Designers (web/mobile, accessibility)

e 4 Backend Engineers (Node.js, integrations)

e 3 Frontend Engineers (React, PWA)

¢ 2 QA Engineers (automation, security)

e 1DevOps Engineer (AWS, CI/CD, monitoring)

e 1 Compliance Officer (PCI DSS, GDPR)

e | Customer Support Lead

¢ SRills Needed:

Dependencies

Plaid, Stripe
integration

OpenAl,
BillShark API

All integrations

User feedbacR,
compliance

e Fintech integrations, Al/ML (OpenAl), security, UX for finance,

accessibility, AWS infrastructure

¢ Budget Considerations:

e Third-party API fees (Plaid, Stripe, OpenAl, BillSharR)

e AWS hosting and scaling

e Compliance audits and penetration testing

¢ MarReting and user acquisition

21. Change Management Plan

User Adoption:
¢ In-app guided tours, demo mode, onboarding tutorials

Training:
* Knowledge base, video walkRthroughs, FAQ

Communication:

¢ [Regular release notes, in-app announcements, email newsletters

FeedbacR Loop:
e In-app feedbacR forms, NPS surveys, user interviews

Support:
¢ Live chat, ticketing system, escalation procedures

References:

¢ All compliance and technical requirements are aligned with [PCI-DSS
Compliance][l] and [Blockchain Technology in Financial Services][2]
Rnowledge base entries.

e User personas, flows, and features are directly extracted and
synthesized from the provided user answers and project context.

End of PRD - Al FinanceMaster App

