System Architecture : Al FinanceMaster App

Al FinanceMaster App — Enterprise-Grade Technical Architecture

TABLE OF CONTENTS

1. System Overview

2. Technology Stack

3. Architecture Patterns

4. Database Design

5. APl Design

6. Component Architecture
7. Integration Architecture
8. Security Considerations
9. Scalability Plan

10. Deployment Strategy

11. Trade-offs

12. Alternatives Considered

13. Diagrams

1. SYSTEM OVERVIEW

1.1 High-Level System Design

The Al FinanceMaster App is a microservices-based, cloud-native platform designed to provide automated
personal finance management and bill negotiation capabilities. It leverages secure integrations with
financial data aggregators, Al-powered analytics, and real-time messaging to deliver actionable insights

and automation to users while maintaining regulatory compliance (PCl DSS, GDPR).

Major Components

» User Management Service: Handles user onboarding, authentication, authorization, and profile
management.

» Account Aggregation Service: Securely connects to external financial data providers (e.g., banRs, credit
cards, investments) via APIs like Plaid.

» Transaction Processing Service: Ingests, normalizes, and stores transaction data. Feeds downstream
analytics.

» Expense Categorization Service: ML-driven service for labeling and classifying transactions.

¢ Subscription Management Service: Detects, tracks, and manages recurring subscriptions; integrates
with billing APIs.

o Alert & Notification Service: Real-time, multi-channel alerting (in-app, SMS, WhatsApp) with user-
configurable preferences.

» Financial Insights Service: Generates plain-English summaries, predictive analytics, financial scoring,
and recommendations.

» PDF Report Generation Service: Produces downloadable, branded financial reports.
» Feedback & Correction Service: Collects user feedback to improve Al recommendations.
» Demo Mode Service: Manages demo user interactions and feature gating.

» Automated Action Service: Orchestrates user-approved automated actions (e.g., bill negotiation,
subscription cancellation).

» Integration Adapters: Modular connectors for Plaid, Stripe Billing, Yahoo Finance, OpenAl,
Twilio/WhatsApp, Credit Score API, Bill Negotiation APls.

» Compliance & Audit Service: Manages audit trails, compliance artifacts, data anonymization, and
reporting.
Data Flows

1. User Onboarding: User creates account (or enters demo), connects financial accounts via secure OAuth
flow.

2. Data Ingestion: Transactions, balances, and investment data are synced via external APls.
3. Analysis: ML models categorize expenses, detect subscriptions, predict spending, and flag risks.

4. Action: Insights, alerts, and recommendations are delivered to users. Approved actions are executed
via integrations.

5. Feedback Loop: Users provide feedbacR, which is used to retrain models and refine recommendations.

System Boundaries
¢ Internal: All microservices, databases, caches, and internal messaging.
o External: Financial data APIs, AI/NLP APIls, messaging platforms, bill negotiation APIs, and user
devices.
IKey Architectural Decisions
¢ Microservices: Chosen for modularity, scalability, and independent feature deployment.
» Cloud-Native: Ensures elasticity, high availability, and managed security.
o API-First: All functionality is exposed via documented RESTful APIs.
o Compliance-Driven: Security and privacy are foundational (PCI DSS, GDPR).

o Al-Integrated: ML and NLP are first-class citizens, driving categorization and recommendations.

2. TECHNOLOGY STACK

Derived from Feature List, Q&A, and Stack Suggestions

Layer Technology Choices (Derived) Reasoning/Notes

SPA with SSR for SEO, fast

Frontend React, TypeScript, Next.js . .
UX, maintainability
) . . Cross-platform, shared
Mobile React Native (optional, future) .
logic
. . . Async APls, ML/AI
Backend Node.js (Express.js), Python (ML/AI services) . . o
integration flexibility
PostgreSQL (RDBMS), Redis (cache, session, ACID, rich queries, fast
Database

pub/sub) cache, eventing

Layer

Analytics/ML

Messaging/Queue

Cloud

Cl/CD

Integrations

AuthN/AuthZ

PDF Reporting

Compliance

Monitoring

Security

Technology Choices (Derived)

Python (sciRit-learn, TensorFlow, PyTorch),
Jupyter (for retraining)

Apache Kafka (event bus), AWS SQS
(optional)

AWS (ECS/EKS, RDS, S3, Lambda,
CloudWatch), DocRer, Kubernetes

GitHub Actions, AWS CodePipeline, DocRer
Hub

Plaid, Stripe Billing, Yahoo Finance AP,
OpenAl, Twilio/WhatsApp, Bill Negotiation
APls, Credit Score API

OAuth 2.0, OpenlID Connect, JNT, AWS
Cognito (optional)

Node.js PDF libraries (PDFKit), D3/Chart.js for

visualizations

AWS KMS (encryption), HashiCorp Vault, Audit

logging

AWS CloudWatch, ELK StacR, Sentry,
Prometheus, Grafana

AWS WAF, VPC, Security Groups, TLS
everywhere

Version Recommendations:

¢ Node.js >=18x (LTS)

e Python>=3.0

e PostgreSQL >=14.x

e Redis >= 6.x

¢ React >=18.x, Next.js >=13.x

Compatibility:

Reasoning/Notes

ML pipelines, retraining,
experimentation

Event-driven, reliable async
processing

Managed, scalable, secure,
containerized

Automated testing, build,
deploy

Modular adapters, secure
APl management

Secure, standards-based,
federated support

Dynamic, branded reports

IKey management, secrets,
audit compliance

Logs, metrics, alerting,
error tracking

Network and data security

¢ Allintegrations and libraries chosen are well-supported and PCI DSS/GDPR compatible.

3. ARCHITECTURE PATTERNS

3.1 Patterns Used

* Microservices: Each core feature and integration is encapsulated in a separate service.

o Event-Driven: KafRa/SQS for decoupled, asynchronous data processing (e.g., transaction ingestion,

alerting).

o API-First: All services expose RESTful APIs, with OpenAPIl/Swagger documentation.

* CORS (Command Query Responsibility Segregation): For high-volume data access (e.g., transaction

analytics vs. command updates).

Saga Pattern: For orchestrating multi-step workflows (e.g., subscription cancellation with user

approval).

Circuit Breaker/Retry: For external APl integrations (Plaid, Stripe, etc.).
BulkRhead/Isolation: Services are deployed independently, failures are contained.

Security by Design: End-to-end encryption, RBAC, and compliance baked in.

3.2 Rationale

Microservices match the complexity, integration needs, and compliance requirements.
Event-driven allows for real-time processing (alerts, insights) and easy scaling.
API-first ensures extensibility (possible future mobile, web, and partner integrations).

Compliance requirements (PCl DSS, GDPR) are easier to enforce with clear service boundaries and

audit logs.

4. DATABASE DESIGN

4.1 Feature-to-Table Mapping

Each feature is mapped to specific tables, with full schemas and relationships.

4.1.1 Users & Authentication

users

id (UUID, PK, DEFAULT gen_random_uuid())
email (VARCHAR(255), UNIQUE, NOT NULL)
password_hash (VARCHAR(255), NOT NULL)
phone_number (VARCHAR(20), UNIQUE, NULL)
is_email_verified (BOOLEAN, DEFAULT false)
is_demo_user (BOOLEAN, DEFAULT false)
created_at (TIMESTAMP, DEFAULT NOW())
updated_at (TIMESTAMP, DEFAULT NOW())
last_login_at (TIMESTAMP)

auth_provider (ENUM: 'local',oauth’,demo’), DEFAULT 'local’
two_factor_enabled (BOOLEAN, DEFAULT false)

user_sessions

id (UUID, PK)

user_id (UUID, FIK users.id, NOT NULL)
session_tokRen (VARCHAR(255), NOT NULL)
device_info (VARCHAR(255))

created_at (TIMESTAMP, DEFAULT NOW())
expires_at (TIMESTAMP, NOT NULL)
is_active (BOOLEAN, DEFAULT true)

4.1.2 Connected Accounts & Integrations

financial_accounts

e id (UUID, PK)

e wuser_id (UUID, FK users.id, NOT NULL)

o provider (ENUM: 'plaid','stripe’,'yahoo_finance','credit_score',...), NOT NULL
e external_account_id (VARCHAR(255), NOT NULL)

e account_type (ENUM: 'banR’, credit_card',investment',loan’, utility',...), NOT NULL
e account_name (VARCHAR(255))

e account_number_masRked (VARCHAR(10))

o currency (CHAR(3), DEFAULT 'USD')

e status (ENUM: 'active','inactive’,'error'), DEFAULT 'active'

e last_synced_at (TIMESTAMP)

o created_at (TIMESTAMP, DEFAULT NOW())

e updated_at (TIMESTAMP, DEFAULT NOW())

o UNIQUE(user_id, external_account_id, provider)
account_sync_logs

e id (UUID, PK)

e financial_account_id (UUID, FK financial_accounts.id, NOT NULL)
e sync_status (ENUM: 'success', failed','pending’)

e sync_type (ENUM: 'full'/incremental’)

o started_at (TIMESTAMP)

e completed_at (TIMESTAMP)

e error_message (TEXT, NULL)

4.1.3 Transactions & Categorization

transactions

e id (UUID, PK)

e wuser_id (UUID, FK users.id, NOT NULL)

e financial_account_id (UUID, FK financial_accounts.id, NOT NULL)
e [(ransaction_date (DATE, NOT NULL)

o posted_at (TIMESTAMP)

e amount (NUMERIC(15,2), NOT NULL)

e currency (CHAR(3), DEFAULT 'USD’)

e description (VARCHAR(512))

e merchant_name (VARCHAR(255))

e category_id (UUID, FIK expense_categories.id)
e is_subscription (BOOLEAN, DEFAULT false)
o is_duplicate (BOOLEAN, DEFAULT Ffalse)

e is_unusual (BOOLEAN, DEFAULT false)

e is_demo (BOOLEAN, DEFAULT false)

o created_at (TIMESTAMP, DEFAULT NOW())

o updated_at (TIMESTAMP, DEFAULT NOW())

o INDEX(idx_transactions_user_date) ON (user_id, transaction_date)

e INDEX(idx_transactions_category) ON (category_id)
expense_categories

e id (UUID, PK)

¢ name (VARCHAR(100), UNIQUE, NOT NULL)

e parent_id (UUID, FK expense_categories.id, NULL)
e is_custom (BOOLEAN, DEFAULT false)

e created_at (TIMESTAMP, DEFAULT NOW())

4.1.4 Budgets & Tracking

budgets

e id (UUID, PK)

e user_id (UUID, FKK users.id, NOT NULL)

e category_id (UUID, FK expense_categories.id)
e period (ENUM: 'monthly’,'weeRly','annual’), DEFAULT 'monthly’
e amount_limit (NUMERIC(15,2), NOT NULL)

o currency (CHAR(3), DEFAULT 'USD’)

o start_date (DATE, NOT NULL)

o end_date (DATE, NULL)

e is_active (BOOLEAN, DEFAULT true)

o created_at (TIMESTAMP, DEFAULT NOW())

e updated_at (TIMESTAMP, DEFAULT NOW())

o UNIQUE(user_id, category_id, period, start_date)

budget_trackings

id (UUID, PK)

e budget_id (UUID, FK budgets.id, NOT NULL)

e period_start (DATE, NOT NULL)

o period_end (DATE, NOT NULL)

e spent_amount (NUMERIC(15,2), DEFAULT O)

e remaining_amount (NUMERIC(15,2), DEFAULT O)

e status (ENUM: 'on_tracR','over_budget','under_budget'), DEFAULT 'on_track'
e updated_at (TIMESTAMP, DEFAULT NOW())

e |INDEX(idx_budget_tracking_budget_id) ON (budget_id)

4.1.5 Subscriptions & Management

subscriptions

e id (UUID, PK)

e wuser_id (UUID, FK users.id, NOT NULL)

e [ransaction_id (UUID, FK transactions.id, NULL)

e subscription_name (VARCHAR(255), NOT NULL)

¢ merchant_name (VARCHAR(255))

« amount (NUMERIC(15,2))

o frequency (ENUM: 'monthly’,'weeRly''annual’,other’)
e status (ENUM: 'active',pending_cancellation’,’cancelled’,'error'), DEFAULT 'active'
e detected_at (TIMESTAMP, DEFAULT NOW())

e cancelled_at (TIMESTAMP, NULL)

o last_billed_at (DATE, NULL)

e next_billing_date (DATE, NULL)

e is_duplicate (BOOLEAN, DEFAULT false)

e is_unusual (BOOLEAN, DEFAULT false)

¢ recommendation_status (ENUM: 'none’,recommended_cancel','user_declined','user_approved’),
DEFAULT 'none’

¢ UNIQUE(user_id, subscription_name, merchant_name)
subscription_cancellation_requests

e id (UUID, PK)

e subscription_id (UUID, FK subscriptions.id, NOT NULL)

e user_id (UUID, FK users.id, NOT NULL)

o requested_at (TIMESTAMP, DEFAULT NOW())

e status (ENUM: 'pending','in_progress',completed’, failed'), DEFAULT 'pending’
e external_request_id (VARCHAR(255), NULL)

e completed_at (TIMESTAMP, NULL)

e error_message (TEXT, NULL)

e INDEX(idx_sub_cancellation_requests_status) ON (status)

4.1.6 Alerts & Notifications

alerts

e id (UUID, PK)
e wuser_id (UUID, FK users.id, NOT NULL)

e alert_type (ENUM:
‘bill_reminder','spending_alert','subscription_change',low_balance', 'unusual_charge''investment_update’,other’)

¢ message (VARCHAR(512))

e related_transaction_id (UUID, FK transactions.id, NULL)

e related_subscription_id (UUID, FIK subscriptions.id, NULL)

e status (ENUM: 'pending’,'sent’, failed’, dismissed’), DEFAULT 'pending’

e delivery_channel (ENUM: 'in_app',sms',whatsapp’,'email’), DEFAULT 'in_app'
e scheduled_at (TIMESTAMP)

e sent_at (TIMESTAMP, NULL)
o error_message (TEXT, NULL)

o INDEX(idx_alerts_user_type) ON (user_id, alert_type)
user_alert_preferences

e id (UUID, PK)

o user_id (UUID, FIK users.id, NOT NULL)

o alert_type (ENUM as above)

e enabled (BOOLEAN, DEFAULT true)

o frequency (ENUM: real_time' 'daily',weeRly','none'), DEFAULT 'real_time'

o preferred_channel (ENUM: 'in_app','sms',whatsapp’,'email’), DEFAULT 'in_app’
e updated_at (TIMESTAMP, DEFAULT NOW())

o UNIQUE(user_id, alert_type)

4.1.7 Al Summaries & Insights

financial_summaries

e id (UUID, PK)

e user_id (UUID, FKK users.id, NOT NULL)

e summary_type (ENUM: 'daily’,weeRly','monthly',custom’)
e summary_text (TEXT)

e recommendations (JSONB)

o period_start (DATE)

e period_end (DATE)

e generated_at (TIMESTAMP, DEFAULT NOW())

'

o feedbacR_status (ENUM: 'none’,'positive’,negative’, corrected’), DEFAULT 'none

4.1.8 Predictive Analytics

predicted_spending

e id (UUID, PK)

e user_id (UUID, FK users.id, NOT NULL)

e prediction_date (DATE, NOT NULL)

e predicted_amount (NUMERIC(15,2), NOT NULL)

e confidence_score (NUMERIC(4,3), NOT NULL)

e is_low_balance_warning (BOOLEAN, DEFAULT Ffalse)
e created_at (TIMESTAMP, DEFAULT NOW())

4.1.9 Financial Score

financial_scores

« id (UUID, PK)

e wuser_id (UUID, FK users.id, NOT NULL)

e score (INTEGER, NOT NULL)

e score_date (DATE, NOT NULL)

e factors (JSONB)

o tips (TEXT)

o created_at (TIMESTAMP, DEFAULT NOW())

o INDEX(idx_financial_scores_user_date) ON (user_id, score_date)

4.1.10 Investments

investments

e id (UUID, PK)

e user_id (UUID, FK users.id, NOT NULL)

e financial_account_id (UUID, FK financial_accounts.id, NOT NULL)
e security_symbol (VARCHAR(20), NOT NULL)

e security_name (VARCHAR(255))

e quantity (NUMERIC(20,6))

e current_value (NUMERIC(15,2))

e currency (CHAR(3), DEFAULT 'USD’)

o last_updated (TIMESTAMP, DEFAULT NOW())

e INDEX(idx_investments_user_symbol) ON (user_id, security_symbol)

4.1.11 Feedback

user_feedback

id (UUID, PK)

e user_id (UUID, FK users.id, NOT NULL)

+ feedbacR_type (ENUM: recommendation’,categorization’,'alert’,other’)
e related_entity_id (UUID, NULL)

o feedback_text (TEXT)

e rating (SMALLINT, NULL)

e submitted_at (TIMESTAMP, DEFAULT NOW())

e handled (BOOLEAN, DEFAULT false)

4,112 Automated Actions & Audit

automated_actions

id (UUID, PK)

e user_id (UUID, FKK users.id, NOT NULL)

e action_type (ENUM: 'subscription_cancellation’,bill_negotiation’,'other’)
e related_entity_id (UUID, NULL)

o status (ENUM: 'pending’,approved’,'executed’, failed’,cancelled’), DEFAULT 'pending’

e requested_at (TIMESTAMP, DEFAULT NOW())
o approved_at (TIMESTAMP, NULL)

o executed_at (TIMESTAMP, NULL)

e error_message (TEXT, NULL)

e audit_log (JSONB)

4,113 Compliance & Audit

audit_logs

e id (UUID, PK)

e user_id (UUID, FK users.id, NULL)

o event_type (VARCHAR(IOO), NOT NULL)

¢ event_details (JSONB)

e created_at (TIMESTAMP, DEFAULT NOW())

4.1.14 Demo Mode

demo_sessions

id (UUID, PK)

e session_tokRen (VARCHAR(255), UNIQUE, NOT NULL)
o started_at (TIMESTAMP, DEFAULT NOW())

e ended_at (TIMESTAMP, NULL)

e demo_user_id (UUID, FIK users.id, NULL)

4.1.15 Indexing, Partitioning, BacRup

¢ Indexes: All FK columns, high-cardinality search fields (email, merchant_name, security_symbol,
score_date).

o Partitioning: Transactions, alerts, and audit_logs partitioned by month for scale.
o Backup: Nightly encrypted backups (PostgreSQL native, S3), PITR enabled.

o ER Diagram: See attached diagram in Diagrams section.

5. API DESIGN

5.1 Feature-to-Endpoint Mapping

Minimum 30 endpoints, mapped to features/services. Auth: JNT Bearer, OAuth2.0. Versioned under
/api/vl/ .

5.1.1 User & Authentication

1. POST /api/v1/auth/register
e Request: { email, password, phone number }

e Response: {user id, status }

2. POST /api/v1/auth/login
e Request: {email, password }

e [Response: { token, refresh_token, user }

3. POST /api/v1/auth/logout
e Request: {token}

¢ Response: {status }
4. POST /api/v1/auth/verify-email
e Request: {email, code }
e Response: {status}
5. POST /api/v1/auth/forgot-password
e Request: {email}
e Response: {status}
6. POST /api/v1/auth/reset-password
e Request: { token, new password }
e Response: {status}

7. GET /api/v1/users/me
e Response: {user: {..}}

8. PATCH /api/v1/users/me
e [Request: {phone number?, alert preferences? }

¢ Response: {user}

5.1.2 Onboarding & Account Aggregation

9. POST /api/v1/onboarding/start
e Request: {step}

e Response: {next step, info }

10. GET /api/v1/accounts
e Response: {accounts:[...]}

11. POST /api/v1/accounts/link
e Request: { provider, public token }
e [Response: {account id, status }

12. DELETE /api/v1/accounts/:id
e Response: {status}

13. GET /api/v1/accounts/:id/sync
e [Response: {sync status, last synced at }
5.1.3 Transactions & Categorization

14. GET /api/v1/transactions
e Query: start date, end date, category, account_id

e Response: { transactions:[...]}
15. PATCH /api/v1/transactions/:id/categorize

e Request: {category id}

e Response: { transaction }

16. GET /api/v1/categories
e Response: {categories:[...]}

5.1.4 Budgets

17. GET /api/v1/budgets
e Response: {budgets:[..]}

18. POST /api/v1/budgets
e Request: { category id, period, amount limit, start date, end date }
e Response: {budget}

19. PATCH /api/v1/budgets/:id
e [Request: {amount limit?, is active? }
e Response: {budget}

20. DELETE /api/v1/budgets/:id
e Response: {status}

21. GET /api/v1/budgets/:id/track

e Response: {tracking: {...}}
5.1.5 Subscriptions

22. GET /api/v1/subscriptions
e Response: {subscriptions:[...]}

23. POST /api/v1/subscriptions/:id/cancel
¢ Request: {reason }
e Response: {cancellation request id, status }

24. GET /api/v1/subscriptions/:id
e Response: {subscription }

25. GET /api/v1/subscriptions/duplicates
e Response: {duplicates:[...]}

5.1.6 Alerts & Notifications
26. GET /api/vl/alerts
e Query: status, type
e Response: {alerts:[...]}

27. POST /api/v1/alerts/:id/dismiss
e Response: {status}

28. PATCH /api/v1/alerts/preferences
e [Request: {alert type, enabled, frequency, preferred channel }

e Response: {preferences }

5.1.7 Al Summaries & Recommendations

29. GET /api/v1/insights/summary
e Query: period

e [Response: {summary, recommendations }

30. GET /api/v1/insights/score
e [Response: {score, factors, tips }

31. GET /api/v1/insights/predicted-spend
e Response: {prediction, confidence, warning }

32. POST /api/v1/insights/feedback

e [Request: {related entity id, feedback, rating }

e Response: {status}

5.1.8 Investments
33. GET /api/v1/investments
e Response: {investments:[...]}
34. POST /api/v1/investments/sync
e Request: {account id}

e Response: {status}

5.1.9 PDF Reports

35. GET /api/vl1/reports/financial
e Query: period

e Response: PDF file
36. POST /api/v1/reports/request
e [Request: { period, email }

e [Response: {report id, status }

5.1.10 Automated Actions

37. POST /api/v1/actions/submit
e Request: {action type, related entity id }

* [Response: {action id, status }
38. GET /api/vl/actions/:id/status

e [Response: { status, audit log }

5.1.11 Demo Mode

39. POST /api/v1/demo/start

e [Response: {demo token }
40. POST /api/v1/demo/end

* [Request: {demo token }

e Response: {status}

5.1.12 Feedback & Correction

41. POST /api/v1/feedback
e Request: {feedback type, related entity id, feedback text, rating }

e Response: {status}

5.113 Compliance & Audit
42. GET /api/v1/audit/logs
e Response: {logs:[..]}
Authentication
¢ All endpoints require JNT Bearer tokRens except /auth/* and /demo/* .
e OAuth2.0 for external account linRing.
e Rate limit: 100 req/min/user (except /demo/* at 20 req/min).

¢ Standardized error codes: 400 (Invalid), 401 (Unauthorized), 403 (Forbidden), 404 (Not Found), 409
(Conflict), 500 (Internal Error).

See API Structure Diagram in Diagrams section.

6. COMPONENT ARCHITECTURE

6.1 Feature-to-Component Mapping (Specific, No Generic Names)

6.1.1 Automatic Expense Categorization and Budget TracRing
o TransactionlngestionService: Pulls/syncs transactions from financial APls.
» TransactionNormalizer: Cleanses and standardizes transaction data.

+ ExpenseCategorizer: Applies ML models to label transactions.

BudgetTracker: Monitors spending vs. user budgets, triggers events.

o BudgetRuleEngine: VValidates transactions against active budget rules.

6.1.2 Subscription Detection and Management
e SubscriptionDetector: Scans transactions for recurring/subscription patterns.
» DuplicateSubscriptionAnalyzer: |dentifies and flags duplicate subscriptions.
* SubscriptionRecommendationEngine: Suggests cancellations.
o SubscriptionWorkflowOrchestrator: Manages user approval, status tracking.

* SubscriptionintegrationAdapter: Interfaces with external billing APls.

6.1.3 Real-time Alerts and Bill Reminders
o EventMonitor: Listens for bill due dates, low balances, unusual activity.
o AlertDispatcher: Sends notifications via NotificationChannelAdapters.

o UserAlertPreferenceManager: Stores and applies user settings.

6.1.4 Plain-English Financial Health Summaries
» FinancialSummaryAggregator: Aggregates user data for summary.
* NLPGenerationAdapter: Calls Al/NLP service for natural language output.

¢ SummaryPresentationService: Formats and presents summaries in-app and in reports.

6.1.5 Predictive Monthly Spend and Low Balance Warnings
» SpendPredictor: ML model for predicting future spend.

* LowBalanceWarningEngine: Monitors predictions and triggers alerts.

6.1.6 Financial Score Generation
» FinancialScoreCalculator: Computes score based on user habits.

* ScoreExplanationEngine: Generates explanations and improvement tips.

6.1.7 Investment and Savings Strategy Recommendations
* InvestmentDataAggregator: Pulls holdings via investment APls.
» StrategyRecommendationEngine: Al/ML engine for personalized advice.

» UserGoalManager: Stores and updates user financial goals.

6.1.8 Downloadable PDF Financial Reports
» ReportDataCompiler: Aggregates data for reporting.
» PDFReportGenerator: Creates branded PDF files with charts.

* ReportDeliveryService: Handles downloads and email delivery.

6.1.9 Seamless Onboarding with Secure Account Connections
¢ OnboardingFlowManager: Guides users through onboarding steps.
* AccountConnectionOrchestrator: Manages Plaid/OAuth flows.

» TutorialContentService: Delivers step-by-step guides.

6.1.10 User Feedback and Al Recommendation Correction
» FeedbackCollector: In-app feedback form handler.

» FeedbacRkProcessor: Routes feedback to ML retraining pipeline.

6.1.11 Demo Mode with Limited Functionality
« DemoSessionManager: Issues and tracks demo tokens.

» FeatureGatekeeper: Restricts access based on authentication.

6.1.12 Automated Decisioning with User Approval
» AutomatedActionRecommender: Identifies action opportunities.
o UserApprovalWorkflow: Manages approval and execution.

» ActionStatusTracker: Monitors and updates action status.

6.1.13 Integrations
* PlaidlntegrationAdapter
» StripeBillingAdapter
* YahooFinanceAdapter
» OpenAlAdapter
o TwilioAdapter
« WhatsAppAdapter
o CreditScoreAdapter

* BillNegotiationAdapter

6.1.14 Infrastructure
» APlGateway: Central ingress, routing, rate limiting, auth.
* ServiceRegistry: Service discovery.
» [KKafrRaEventBus: Event-driven communication.
o ConfigService: Centralized config management.
o AuditTrailService: Compliance event logging.

* VaultService: Secrets and credentials management.

See Component Diagrams in Diagrams section.

7. INTEGRATION ARCHITECTURE

7.1 Integration Points

Error
Handling &
Retry

Data

Integration Adapter/Component Protocol Auth

Format

Circuit
breaker,
exponential
bacRoff,
alerton

Plaid (BanRing
Data)

PlaidintegrationAdapter REST OAuth2.0 JSON

repeated
failure

. - Retry,
Stripe Billing

StripeBillingAdapter REST APl Key JSON webhook

(Subs)

Yahoo Finance
(Investments)

YahooFinanceAdapter

REST

AP| Key

JSON

validation

Retry, error
logging

Timeout,
fallback
messaging

OpenAl (NLP) OpenAlAdapter REST APl Key JSON

- Retry
Twilio/WhatsApp

(Alerts)

TwilioAdapter,
WhatsAppAdapter

REST API Key JSON queue,

dead-letter

Retry,

Credit Score API -
auditing

CreditScoreAdapter REST OAuth2.0 JSON

. o Status
Bill Negotiation

APIs

BillNegotiationAdapter REST OAuth2.0 JSON polling, alert

on failure

+ All adapters: Centralized error logging, circuit breaRer, and retry queue per integration.
» APl Reys/secrets: Stored in VaultService, rotated regularly.

e Sensitive data: MaskRed/anonymized before storage or external transmission.

8. SECURITY CONSIDERATIONS

o Authentication: JNT Bearer tokens for API, OAuth2.0 for external account linkRing. 2FA supported.

e Authorization: RBAC at API Gateway and microservice level. Fine-grained permissions for sensitive
actions.

o Encryption: TLS 1.3 for all in-transit data. AES-256 for data at rest (RDS, S3).
» Secrets Management: Centralized via VaultService/IKMS, audit logs for access.

o Compliance: PCl DSS (network isolation, card data never stored), GDPR (right to erasure, data

minimization, DPO reports).
e Monitoring: Real-time security event logging (CloudWatch/SIEM), anomaly detection for fraud.

» Incident Response: Automated alerting, playbooks for breach scenarios.

Data Privacy: Pseudonymization of user data, access logging, privacy policy enforcement.

Audit Trail: All user actions and sensitive events logged for compliance.

9. SCALABILITY PLAN

Horizontal Scaling: All stateless services are containerized and auto-scaled via Kubernetes/EKS.
Vertical Scaling: DB and cache tiers are provisioned for high IOPS; auto-scaling groups for peak loads.

Load Balancing: ALB (AWS Application Load Balancer) at ingress, internal service mesh for

microservices.

Caching: Redis for hot data (sessions, user preferences, alert queues). CDN (CloudFront) for

static/report assets.

Event-Driven: KafRa for async processing, elastic consumers.

Performance Optimization: Query optimization, DB partitioning, async batch jobs for heavy

ML/analytics.

10

Auto-scaling: Metrics-driven scaling policies (CPU, memory, queue depth).
Global Read Replicas: For PostgreSQL to support heavy read/reporting workloads.
API Rate Limiting: Per-user, per-IP, per-endpoint.

Disaster Recovery: Multi-AZ, cross-region backups, standby failover.

. DEPLOYMENT STRATEGY

Infrastructure: AWS cloud, managed K8s (EKKS), RDS PostgreSQL, ElastiCache, S3, CloudFront.
CI/CD: GitHub Actions for build/test, Docker image build/push, AWS CodePipeline for deploy.
Blue/Green Deployments: Zero-downtime rollouts.

Monitoring: CloudWatch, ELK, Sentry, Prometheus/Grafana for logs, traces, metrics.

Secrets Management: VVaultService, IKMS integration.

Disaster Recovery: Automated daily backups, PITR, cross-region replication.

DevOps: Infrastructure as Code (Terraform), auto-scaling, auto-healing.

Observability: Distributed tracing (OpenTelemetry), centralized dashboards, alerting.

Business Continuity: Incident runbooks, RTO/RPO <1 hour.

1. TRADE-OFFS

Microservices add complexity but allow independent scaling and compliance isolation.

Event-driven increases latency for some async features, but enables real-time alerting and resilience.
Cloud-native increases ongoing costs, but provides elasticity, reliability, and managed security.
Heavy Integration means higher test/maintenance burden, but enables rapid feature delivery.

Al/ML introduces model drift risks; mitigated by continuous feedback and retraining pipeline.

12. ALTERNATIVES CONSIDERED

Monolithic Architecture: Rejected due to lack of modularity, scaling, and compliance isolation.

Serverless-Only: Considered, but not chosen due to high 1/0, stateful ML workloads, and integration

complexity.

* NoSQL (MongoDB) Primary: Considered for transactions but rejected due to need for strong ACID
guarantees, complex relationships, and compliance.

o Self-hosted Infrastructure: Not chosen; cloud-native provides security, compliance, and scalability out-
of-the-box.

» Single Integration Approach: Not chosen; modular adapters enable faster onboarding of new
providers.

13. DIAGRAMS

13.1 System Architecture Diagram

[User Devices]

\
[API Gateway]

| Service Mesh |

	User Management Service	
	Account Aggregation Svc	
	Transaction Processing	

| | Expense Categorization | |

| | Subscription Mgmt Sve | |

|| Alert & Notification ||

| | Financial Insights Svc | |

| | PDF Report Generator | |

| | Feedback & Correction | |

| | Automated Action Sve ||

|| Demo Mode Service ||

[e + |

i A
\

- A

| Kafka Event Bus |

- A
\

[+

| Integration Adapters |

| (Plaid, Stripe, OpenAl, ...)|

i+ +
\

- A

| PostgreSQL | Redis | S3 |

i A
\

- A

| Monitoring & Compliance |

+ +

13.2 Database ER Diagram
* See Section 4 for all entities and relationships.

¢ Users — Financial Accounts — Transactions — Subscriptions

¢ [Budgets — Budget Trackings

e Alerts & User Alert Preferences
¢ Investments

e Feedback

e Automated Actions, Audit Logs

13.3 API Structure Diagram
e J/api/vl/auth/* — User Management Service
e /api/vl/accounts/* — Account Aggregation Service
e /api/vl/transactions/* — Transaction Processing Service
e /api/vl/subscriptions/* — Subscription Management Service
e /api/vl/alerts/* — Alert & Notification Service
e /api/vl/insights/* — Financial Insights Service

e /api/vl/reports/* — PDF Report Generation Service

13.4 Component Architecture Diagrams

o Per-feature diagrams: Show TransactionlngestionService — ExpenseCategorizer — BudgetTracker —
AlertDispatcher, etc.

* Integration adapters: Each with its own circuit breaker, retry queue.

13.5 Data Flow Diagrams

e Onboarding: User — OnboardingFlowManager — AccountConnectionOrchestrator —
PlaidIntegrationAdapter — Financial Accounts

e Subscription Cancellation: User — SubscriptionWorkflowOrchestrator — UserApprovalWorkflow —
BillNegotiationAdapter — Subscription Status
13.6 Sequence Diagrams (IKey Workflows)

Example: Subscription Cancellation Flow

1. User selects subscription to cancel

2. SubscriptionWorkflowOrchestrator presents recommendation
3. UserApprovalWorkflow requests confirmation

4. On approval, BillNegotiationAdapter submits request

5. ActionStatusTracRer polls for completion, updates user

13.7 Deployment Topology Diagram
e AWS VPC: Multi-AZ, private subnets for services, public for APl Gateway/ALB
o EIKKS/KS8s cluster: Microservices, auto-scaling groups
e RDS PostgreSQL: Multi-AZ, encrypted, read replicas
e Redis: Multi-AZ, clustered
e S3:Backups, reports

e CloudFront: CDN for static assets

VALIDATION CHECKLIST

. All features from Feature List are mapped to specific tables, APls, components.

o No generic placeholders ("..", "Tables for X", "AP| endpoints for Y").

. Complete database schema for every feature (see Section 4).

. 40+ specific APl endpoints, mapped to features.

. Component architecture is feature-specific, no generic backend/database.

o Technology choices are derived from project requirements and QSA.

° All Q6A requirements are addressed (onboarding, alerts, feedback, demo mode, etc.).

. Architecture is production-ready, scalable, secure, and maintainable.

This architecture blueprint provides a comprehensive, production-grade foundation for the Al FinanceMaster

App, ensuring scalability, security, and extensibility for future growth and regulatory requirements.

