User Stories : ClusterMaster SaaS Hub

£ Initial Project Setup and Infrastructure

This epic covers foundational setup tasks including repository initialization, development
environment setup, CI/CD pipeline configuration, database migration frameworR, testing
frameworRs, code quality tools, and documentation setup to ensure a robust project
foundation.

7 stories

Spike: Documentation Framework Setup medium

As a technical writer, | want to set up documentation frameworks for APl docs and
user guides, so that project documentation is accessible and maintainable.
Acceptance Criteria:

® API docs auto-generated and accessible via Ul
® User guides cover initial features

® Documentation is version controlled and updated

Story Points: 3

Spike: Code Quality Tools Setup medium

As a developer, | want to integrate ESLint, Prettier, and other code quality tools, so
that code style and quality are maintained consistently.
Acceptance Criteria:

® Code style violations are detected and reported
(® Developers are prevented from committing bad style

® Documentation on coding standards is available

Story Points: 2

Spike: Testing FrameworR Setup high

As a QA engineer, | need to set up unit, integration, and E2E testing frameworRs, so
that code quality and functionality are verified automatically.
Acceptance Criteria:

® Tests run automatically in Cl pipeline
® Code coverage reports generated

® Test failures cause pipeline to fail

Story Points: 5

Spike: Database Migration Framework Setup high

As a backend engineer, | need to set up a database migration frameworR, so that
schema changes are version-controlled and deployable.
Acceptance Criteria:

® Migrations can be applied and rolled bacR reliably
® Cl pipeline runs migrations on test databases

® Migration scripts stored in version control

Story Points: 3

Spike: CI/CD Pipeline Setup high

As a DevOps engineer, | need to configure CI/CD pipelines using GitHub Actions
and ArgoCD, so that code is automatically built, tested, and deployed.
Acceptance Criteria:

® Pull requests trigger Cl workflows with status checks
® Successful builds trigger deployment to dev environment

® Pipeline includes security scanning and code quality checks

Story Points: 5

SpiRe: Development Environment Setup high

As a developer, | need to set up local development environments with Docker and
necessary tools, so that development is consistent and efficient.
Acceptance Criteria:

® Developers can run frontend and backend locally with one command
® Environment variables and secrets management documented

® DocRer images are optimized for local development

Story Points: 3

Spike: Repository Initialization and Project Scaffolding high

As a developer, | need to set up the initial project repository and scaffolding, so that
the team has a standardized codebase to start development.
Acceptance Criteria:

® Repository is created with README and license
(® Basic React frontend and Node.js backend scaffolds are committed

® Branch protection rules are configured

Story Points: 3

£ Reliability and Availability

This epic ensures the platform is reliable and highly available, minimizing downtime and
ensuring continuous Kubernetes operations management through redundancy, failover,
error handling, and monitoring.

3 stories

Implement Continuous Monitoring of Platform Health high

As the system, | want continuous monitoring of platform health with alerts, so that
issues are detected and resolved proactively.

L Dependencies:
infra-1-..

Acceptance Criteria:

Functional: Platform health metrics (CPU, memory, latency, error rates) are collected and
visualized.

Functional: Alerts are configured for critical health degradations.

Technical: Prometheus and Grafana are deployed for monitoring and dashboards.

Technical: Alertmanager integrates with NotificationService for alert delivery.

OO0 06

Technical: Monitoring covers all microservices, databases, and infrastructure.

Story Points: 8

Estimated Effort: 8 hours

Implement Robust Error Handling and Recovery high

As the system, | want robust error handling and automated recovery for failures, so
that operational disruptions are minimized.
L Dependencies:

ele5e730.. b2fe9d34..

Acceptance Criteria:

Functional: Services handle errors gracefully with retries and circuit breaRers.
Functional: Failed workflows trigger rollback or compensation actions.
Technical: Implement circuit breakRer pattern in ClusterConnectorManager and AP| Gateway.

Technical: Workflow Engine supports retry policies and failure notifications.

ONONONONO

Technical: Errors are logged with context and severity.

Story Points: 8

Estimated Effort: 8 hours

Implement Redundancy and Failover Mechanisms high

As the system, | want core services and databases to have redundancy and failover,
so that platform availability meets SLA requirements.
49 Dependencies:

infra-1-...

Acceptance Criteria:

Functional: Services are deployed in multi-AZ clusters with failover capabilities.
Functional: Databases support streaming replication and automatic failover.
Technical: Kubernetes deployments use multi-AZ node pools with pod anti-affinity.

Technical: Health checks trigger failover and self-healing actions.

ONONONONO)

Technical: Failover events are logged and alerted.

Story Points: 8

Estimated Effort: 8 hours

& Security and Compliance

This epic ensures secure access, data protection, and compliance enforcement across the
platform and managed clusters, including authentication, authorization, encryption, audit
logging, and regulatory compliance.

3 stories

Implement Audit Logging and Compliance Reporting high

As a compliance officer, | want immutable audit logs of all critical actions and
compliance reports, so that regulatory requirements are met.

9 Dependencies:

Ob9de92e...

Acceptance Criteria:

Functional: All user actions, policy changes, and system events are logged immutably.
Functional: Audit logs are queryable and exportable for compliance audits.
Technical: Logs are stored securely with encryption at rest.

Technical: Compliance reports are generated per GDPR, HIPAA, ISO 27001, and SOC 2
standards.

© 0006006

Technical: Audit logging integrates with PolicyManager and Governance services.

Story Points: 8

Estimated Effort: 8 hours

Secure Authentication and Authorization with OAuth2 and SAML high

As a user, | want to authenticate securely using OAuth2 or SAML SSO, so that my
access is protected and compliant with enterprise policies.
Acceptance Criteria:

® Functional: Users can log in via OAuth2 or SAML SSO providers.

® Functional: Multi-factor authentication (MFA) is supported and enforced.

® Technical: AuthService issues JWT toRens with appropriate claims and expiry.
® Technical: ToRens are validated at API Gateway and services.

® Technical: Authentication failures are logged and monitored.

Story Points: 8

Estimated Effort: 8 hours

Implement Role-Based Access Control (RBAC) high

As a security administrator, | want RBAC enforced across all APIs and Ul
components, so that users have least privilege access.
49 Dependencies:

infra-1-...

Acceptance Criteria:

® Functional: Users have roles assigned with specific permissions.

® Functional: Access to API endpoints and Ul features is restricted based on roles.

® Technical: RBAC policies are stored in PostgreSQL and enforced in APl Gateway and services.
® Technical: Unauthorized access attempts are logged and alerted.

® Technical: RBAC integrates with OAuth2 and SAML authentication flows.

Story Points: 8

Estimated Effort: 8 hours

£ Performance and Scalability

This epic addresses non-functional requirements to ensure the platform performs
efficiently and scales to support mid-to-large enterprises with thousands of clusters and
concurrent users, maintaining responsive Ul and backend performance.

2 stories

Support Horizontal and Vertical Scaling of Services high

As the system, | want backend services to scale horizontally and vertically to handle
increasing load, so that platform remains stable and performant.

49 Dependencies:

infra-1-...

Acceptance Criteria:

® Functional: Services scale automatically based on CPU, memory, and custom metrics.
® Technical: Kubernetes HPA configured for microservices with appropriate thresholds.
® Technical: Database clusters support replication and scaling.

® Technical: Observability pipelines scale with workload.

® Technical: Auto-scaling tested under simulated load.

Story Points: 8

Estimated Effort: 8 hours

Ensure Dashboard Loads Within 2 Seconds Under Load high

As the system, | want the dashboard to load in under 2 seconds even with 1000+
clusters, so that users have a responsive experience.

L Dependencies:

3b6551c9.. 4585ec35..

Acceptance Criteria:

® Functional: Dashboard Ul loads and renders Rey data within 2 seconds for typical user
sessions.

® Technical: Backend APIs respond within 500ms for 95% of requests under load.
® Technical: Caching strategies (Redis) are implemented for hot data.
® Technical: Load testing simulates 10,000 concurrent users and 1,000 clusters.

©® Technical: Performance bottlenecks are identified and mitigated.

Story Points: 8

Estimated Effort: 8 hours

&£ Hybrid and Multi-Cloud Environment Support

This epic ensures the platform supports managing IKubernetes clusters deployed on-
premise and across multiple cloud providers including AWS, GCP, and Azure, providing
seamless and consistent operations across heterogeneous environments.

3 stories

Ensure Consistent Operations Across Heterogeneous Environments high

As a platform engineer, | want consistent lifecycle management and observability
features across all clusters, so that operational processes are unified.

49 Dependencies:

b2fe9d34.. 8a04bO5f.

Acceptance Criteria:

Functional: Lifecycle operations (deploy, scale, upgrade) behave consistently across all cluster
types.
Functional: Observability data is normalized and aggregated from all environments.

Technical: Cluster abstraction layer provides unified API for services.

Technical: Tests validate consistent behavior across on-prem and cloud clusters.

ONONONORENOC

Technical: Ul shows unified views without environment-specific discrepancies.

Story Points: 8

Estimated Effort: 8 hours

Handle Provider-Specific APls and Authentication high

As the system, | want to abstract provider-specific IKubernetes APls and
authentication mechanismes, so that operations are consistent regardless of cluster
location.

49 Dependencies:

b2fe9d34..

Acceptance Criteria:

Functional: Platform translates generic cluster operations to provider-specific API calls.
Functional: Authentication tokRens and credentials are securely managed and rotated.

Technical: ProviderintegrationAdapter abstracts AWS EKS, GCP GKE, Azure AKS, and on-prem
APls.

Technical: Implements circuit breaker pattern for external API calls.

OO0 0006

Technical: Logs and alerts on authentication failures or API errors.

Story Points: 8

Estimated Effort: 8 hours

Connect and Manage Clusters Across On-Premise and Cloud Environments high

As a platform engineer, | want to register and manage IKubernetes clusters from on-
premise and multiple cloud providers, so that | have unified control over my
infrastructure.

Acceptance Criteria:

Functional: Users can register clusters with provider-specific credentials and metadata.
Functional: Platform displays clusters from all environments in unified dashboard.
Technical: ClusterConnectorManager handles secure connectivity and AP| proxying.

Technical: Supports authentication methods including service accounts, IAM roles, and
Rubeconfigs.

© OO006006

Technical: Cluster metadata stored in PostgreSQL with provider and region details.

Story Points: 13

Estimated Effort: 13 hours

£ Application Deployment and Upgrade Workflow

This epic covers the guided process for selecting applications, configuring deployment or
upgrade settings, and initiating automated orchestration across clusters with integrated
health monitoring and scaling support.

4 stories

Integrate Health Monitoring During Deployment and Upgrade high

As an SRE, | want health monitoring integrated into deployment and upgrade
worRflows, so that | can ensure application stability during changes.
L Dependencies:

ele5e730.. 5d4lad59..

Acceptance Criteria:

® Functional: Health checks are performed at each step of deployment and upgrade.
® Functional: Workflow pauses or rolls bacR if health degrades beyond thresholds.
® Technical: HealthMonitor service provides real-time status to Workflow Engine.

® Technical: Alerts are generated for health issues during workflows.

® Technical: Frontend displays health status and alerts during operations.

Story Points: 8

Estimated Effort: 8 hours

Automate Orchestration of Deployment and Upgrade Processes high

As the system, | want to orchestrate deployment and upgrade workflows
automatically, so that operations are consistent, reliable, and scalable.

49 Dependencies:

a4889d5l...

Acceptance Criteria:

Functional: Deployment and upgrade workflows execute steps automatically with status
updates.

Functional: Supports rollback on failure and health check integration.

Technical: Uses Workflow Engine (Temporal) to manage multi-step orchestration.

Technical: Integrates with ClusterConnectorManager for cluster API calls.

ONONONORENOC

Technical: Deployment events are logged and accessible via API.

Story Points: 13

Estimated Effort: 13 hours

Provide Configuration Options for Deployment and Upgrades high

As a platform engineer, | want to configure deployment and upgrade settings such
as replicas and environment variables, so that | can customize application behavior
per cluster.

9 Dependencies:

81435c36...

Acceptance Criteria:

® Functional: Ul allows editing configuration overrides before deployment or upgrade.
® Functional: Configuration schema validation is performed client and server side.

® Technical: AppConfigManager validates and stores configuration JSON schemas.

® Technical: APl endpoints accept and validate config overrides in deployment requests.

® Technical: Configuration changes are versioned and auditable.

Story Points: 8

Estimated Effort: 8 hours

Implement Application Selection Interface high

As a platform engineer, | want to browse and select applications for deployment or
upgrade, so that | can manage stateful workRloads efficiently.

Acceptance Criteria:

Functional: Ul lists available applications with search and filtering capabilities.
Functional: Application details and versions are viewable before selection.

Technical: Frontend fetches application data from /api/vl/applications and
/api/vl/applications/:id/versions.

Technical: APl responses are paginated and cached for performance.

OO0 06006

Technical: RBAC enforced on application data access.

Story Points: 5

Estimated Effort: 5 hours

£ Intuitive and lllustrative User Interface

This epic focuses on delivering an easy-to-use interface with visual workflows, step-by-
step guidance, and clear visual cues that simplify complex IKubernetes operations,
improving productivity and reducing the learning curve for platform teams and SREs.

3 stories

Design Clear Visual Cues and lllustrative Elements high

As a platform engineer, | want clear visual cues and illustrative elements in the Ul, so
that | can understand system states and actions intuitively.

Acceptance Criteria:

® Functional: Ul uses icons, colors, and animations to indicate statuses and actions.
® Functional: Visual elements are consistent across all modules and responsive.

® Technical: UlComponentLibrary provides reusable components for visual cues.

® Technical: Design follows UX best practices and is tested with user feedbacR.

® Technical: Components are optimized for performance and accessibility.

Story Points: 8

Estimated Effort: 8 hours

Provide Step-by-Step Guidance and Onboarding Tours high

As a new user, | want step-by-step guidance and onboarding tours, so that | can
learn to use the platform quicRly and effectively.

Acceptance Criteria:

® Functional: Onboarding tours guide users through Rey features and workflows.

® Functional: Users can track progress and resume tours at any time.

® Technical: TourProgressTracker stores user progress in backend and syncs with Ul.
® Technical: Tours are configurable and extensible for future features.

® Technical: Ul supports Reyboard navigation and screen readers.

Story Points: 8

Estimated Effort: 8 hours

Implement Visual Workflows for IKey Operations high

As a platform engineer, | want visual workflows guiding me through complex
operations like deploying applications and managing clusters, so that | can complete
tasks efficiently and with confidence.

49 Dependencies:

epic-2-u.. epic-6-u..

Acceptance Criteria:

Functional: Visual workflows are available for deployment, scaling, upgrading, and governance
tasRs.

Functional: Workflows provide step-by-step guidance with progress indicators.

Technical: UIWorkflowGuide component manages workflow states and transitions.

Technical: Workflows are responsive and accessible per WCAG 2.1 AA standards.

ONONONORENOC

Technical: Frontend uses React with interactive Ul components and animations.

Story Points: 13

Estimated Effort: 13 hours

& Centralized Governance and Policy Management

This epic covers centralized policy management to enforce consistent governance and
compliance across hybrid and multi-cloud Kubernetes environments, including policy
definition, enforcement, audit logging, and reporting.

3 stories

Provide Audit Trails and Compliance Reporting high

As a compliance officer, | want to view audit trails and generate compliance reports,
so that | can demonstrate adherence to policies and regulatory requirements.

L Dependencies:

8452d97a.. bbel3fa7..

Acceptance Criteria:

Functional: Audit logs capture all policy changes, enforcement actions, and user activities.
Functional: Users can query audit logs with filters by user, action, resource, and time.
Functional: Compliance reports can be generated and exported in PDF/CSV formats.

Technical: Audit logs are immutable and stored securely in PostgreSQL.

ONONONONO)

Technical: Reporting APIs provide aggregated compliance data with pagination.

Story Points: 8

Estimated Effort: 8 hours

Enforce Compliance Across All Managed Clusters high

As the system, | want to enforce governance policies consistently across all
managed clusters, so that compliance is maintained in hybrid and multi-cloud
environments.

49 Dependencies:

8452d97a...

Acceptance Criteria:

Functional: Policies are pushed and enforced on clusters using policy engines (OPA/IKyverno).
Functional: Enforcement status is reported bacR to the platform for audit and alerting.
Technical: PolicyEnforcer integrates with ClusterConnectorManager to apply policies.

Technical: Enforcement failures trigger alerts and are logged in audit logs.

ONONONONO

Technical: Supports multi-cloud provider API differences transparently.

Story Points: 13

Estimated Effort: 13 hours

Define and Manage Governance Policies Centrally high

As a compliance officer, | want to create and manage governance policies centrally,
so that | can enforce consistent rules across all clusters.

Acceptance Criteria:

Functional: Users can create, edit, and delete governance policies via Ul and APL.

Functional: Policies support types such as security, compliance, resource limits, and custom
rules.

Technical: PolicyManager service stores policies in PostgreSQL with JSONB definitions.

Technical: APl endpoints support CRUD operations with RBAC enforcement.

ONONOEENONO)

Technical: Input validation and sanitization are applied to policy definitions.

Story Points: 8

Estimated Effort: 8 hours

& Observability Tools

This epic includes features for aggregating metrics, logs, and traces from hybrid and
multi-cloud Kubernetes clusters, providing monitoring dashboards, troubleshooting tools,
and alerting capabilities to enhance visibility and operational efficiency.

3 stories

Enable Alerting Based on Observability Data high

As an SRE, | want to configure alerts based on metrics, logs, and traces, so that | am
proactively notified of issues in stateful workloads.
9 Dependencies:

8a04b0O5f...

Acceptance Criteria:

® Functional: Users can define alert rules with thresholds and conditions.

® Functional: Alerts trigger notifications via in-app, email, or webhooR channels.

® Technical: AlertRuleEngine evaluates observability data streams and generates alerts.
® Technical: NotificationService integrates with Slack, Teams, and SMTP for alert delivery.

® Technical: Alert lifecycle (active, resolved) is tracked and displayed in Ul.

Story Points: 8

Estimated Effort: 8 hours

Provide Monitoring Dashboards and Troubleshooting Tools high

As an SRE, | want dashboards and tools to monitor metrics, logs, and traces, so that |
can troubleshoot and optimize stateful workRloads effectively.

49 Dependencies:

8a04bO5f..

Acceptance Criteria:

® Functional: Pre-built dashboards display cluster and application metrics, logs, and traces.

® Functional: Users can filter and search observability data by cluster, application, and time range.
(® Technical: Frontend integrates Grafana dashboards and custom React components.

® Technical: APIs support querying observability data with pagination and filtering.

® Technical: Dashboard load time is under 2 seconds for typical queries.

Story Points: 13

Estimated Effort: 13 hours

Collect and Unify Metrics, Logs, and Traces high

As the system, | want to collect and unify observability data from all managed
clusters, so that users have a holistic view of worRload performance.

L Dependencies:
infra-1-..

Acceptance Criteria:

® Functional: Metrics, logs, and traces are collected from on-prem and cloud clusters.

® Functional: Data is normalized and stored in appropriate backends (TimescaleDB, MinlO, etc.).
® Technical: ObservabilityCollector integrates with Prometheus, LoRi, and Jaeger APls.

® Technical: Data pipelines use IKafRa event bus for reliable ingestion.

® Technical: Data retention policies are configurable per tenant.

Story Points: 13

Estimated Effort: 13 hours

& Simplified Cluster Lifecycle Management

This epic encompasses streamlined processes for deploying, scaling, and upgrading
stateful applications across hybrid and multi-cloud Kubernetes environments. It
automates orchestration, ensures proper scaling, and integrates health monitoring to
reduce manual effort and errors.

4 stories

Provide Health Monitoring During Lifecycle Operations high

As an SRE, | want continuous health monitoring during deployments, scaling, and
upgrades, so that | can detect and respond to issues promptly.

L Dependencies:

ffIf1719.. cO5df2le..

Acceptance Criteria:

Functional: Health status of applications is monitored and displayed during lifecycle
operations.

Functional: Alerts are generated if health degrades during operations.

metrics.

©

©

® Technical: HealthMonitor service integrates with ObservabilityService to fetch real-time
® Technical: Health data is pushed to Workflow Engine to influence orchestration decisions.
©

Technical: Frontend Ul shows health indicators and alerts during operations.

Story Points: 8

Estimated Effort: 8 hours

Automate Upgrade Workflow for Stateful Applications high

As a platform engineer, | want to upgrade stateful applications with automated
orchestration and rollbacR support, so that upgrades are safe and minimize
downtime.

49 Dependencies:

ffIF1719...

Acceptance Criteria:

Functional: User can initiate upgrades selecting target version and configuration.
Functional: Upgrade process is orchestrated with health monitoring and rollback on Failure.

Technical: Workflow Engine manages upgrade steps with integration to
AppDeploymentService.

Technical: Supports hybrid and multi-cloud environments with provider-specific APl handling.

OO0 0006

Technical: Deployment events and logs are recorded and accessible.

Story Points: 13

Estimated Effort: 13 hours

Enable Scaling Operations for Stateful Applications high

As an SRE, | want to scale stateful applications up or down across clusters, so that
resource usage matches workRload demands.

49 Dependencies:

ffIF1719...

Acceptance Criteria:

® Functional: User can initiate scaling operations with desired replica counts.
Functional: Scaling actions are automated and reflected in cluster state.

©

® Technical: Scaling commands are executed via ClusterLifecycleController and
ClusterConnectorManager.

©

©

Technical: Health monitoring integration ensures scaling does not degrade application
availability.

Technical: Rollback mechanisms are in place for failed scaling operations.

Story Points: 8

Estimated Effort: 8 hours

Support Stateful Application Deployment Workflow high

As a platform engineer, | want to deploy stateful applications across clusters using a
guided workflow, so that deployments are reliable and consistent across hybrid
environments.

49 Dependencies:

epic-6-u.. epic-l-u..

Acceptance Criteria:

® Functional: User can select an application and initiate deployment with configuration options.
® Functional: Deployment process is automated and orchestrated across selected clusters.

® Technical: Uses AppDeploymentService and Workflow Engine to manage deployment steps.
® Technical: Supports multi-cloud APl compatibility for AWS, GCP, Azure, and on-prem clusters.

® Technical: Deployment status and logs are accessible via APl and Ul.

Story Points: 13

Estimated Effort: 13 hours

£ Cluster Dashboard

This epic covers all features related to the Cluster Dashboard, providing platform teams
and SREs with a clear, real-time overview of all managed Kubernetes clusters, their health
status, Rey performance metrics, and critical alerts. It enables quick assessment and
situational awareness of the cluster landscape.

4 stories

Provide Snapshot Overview for Quick Cluster Assessment high

As a platform engineer, | want a snapshot summary on the dashboard showing
counts of clusters by health status and number of critical alerts, so that | can quicRly
understand the overall cluster landscape.

L Dependencies:

3b6551c9.. cO5df2le..

Acceptance Criteria:

® Functional: Dashboard includes summary cards showing total clusters, healthy clusters,
clusters with warnings, and critical alerts count.

® Functional: Summary updates dynamically with real-time data.

® Technical: Summary data is aggregated efficiently from cluster and alert databases.

©

Technical: APl endpoint /api/vl/dashboard/summary provides aggregated data with response
time < 200ms.

® Technical: Frontend renders summary cards with responsive design.

Story Points: 5

Estimated Effort: 5 hours

Display Critical Alerts and Notifications on Dashboard high

As an SRE, | want to see critical alerts and notifications related to clusters on the
dashboard, so that | can quicRly identify and respond to issues.

L Dependencies:

3b6551c9...

Acceptance Criteria:

Functional: Dashboard shows active critical alerts with severity and message.
Functional: Alerts update in real-time as they are generated or resolved.
Technical: Alerts are aggregated from ClusterAlertService and Observability AlertRuleEngine.

Technical: Alert data is stored in PostgreSQL and pushed via event-driven KafRa streams.

ONONONONO)

Technical: Frontend displays alerts with visual indicators and allows filtering by severity.

Story Points: 8

Estimated Effort: 8 hours

Show Key Performance Metrics per Cluster high

As a platform engineer, | want to view Rey performance metrics (CPU usage, memory
usage, network |O) for each cluster on the dashboard, so that | can monitor resource
utilization at a glance.

49 Dependencies:

3b655I1cH...

Acceptance Criteria:

Functional: Dashboard displays CPU, memory, and network 10 metrics for each cluster.
Functional: Metrics are updated at least every minute.

Technical: Metrics are aggregated from TimescaleDB and Prometheus via Observability Service
APIs.

Technical: Frontend uses charting libraries (e.g., Chart.js) to visualize metrics responsively.

OO0 0006

Technical: API response time for metrics data is under 500ms for 95% of requests.

Story Points: 8

Estimated Effort: 8 hours

Display All Managed Clusters with Health Status high

As a platform engineer, | want to see a list of all managed Kubernetes clusters with
their current health status, so that | can quickly assess the operational state of my

cluster landscape.

Acceptance Criteria:

Functional: The dashboard displays all clusters registered to the tenant with their health status
(healthy, warning, critical, offline).

Functional: Health status updates in real-time or near real-time (within 30 seconds).

Technical: Cluster health data is fetched from the Cluster Management Service via API.

Technical: Uses WebSocket or polling mechanism to update cluster health without page reload.

ONONONORENOC

Technical: Data is stored and indexed in PostgreSQL with appropriate caching via Redis.

Story Points: 5

Estimated Effort: 5 hours

