
Product Requirements Document (PRD):
ClusterMaster SaaS Hub

1. Executive Summary

ClusterMaster SaaS Hub is an enterprise-grade, SaaS-based Kubernetes

operations platform designed to simplify, illustrate, and unify the

management of stateful applications across hybrid and multi-cloud

environments (on-premise, AWS, GCP, Azure). Targeted at platform

engineering teams, SREs, and DevOps professionals in mid-to-large

enterprises (500+ employees), ClusterMaster addresses the operational

complexity, fragmented tooling, and governance gaps that plague

Kubernetes at scale. The platform delivers a single pane of glass for cluster

lifecycle management, application deployment/upgrades, observability, and

operational governance, with a unique focus on stateful workloads and

intuitive, illustrative workflows. The primary objectives are to reduce

operational overhead, improve reliability, accelerate onboarding, and enforce

unified governance across environments.

2. Problem Statement

Enterprises running mission-critical, stateful workloads (databases,

message queues, persistent storage) on Kubernetes across hybrid and

multi-cloud environments face significant challenges:

Complexity & Fragmentation: Managing cluster lifecycle, upgrades, and

stateful application deployments is complex, requiring expertise with

disparate tools (Helm, ArgoCD, Prometheus, custom scripts) or cloud-

specific solutions (EKS, GKE, AKS).

Governance Gaps: Lack of centralized policy management and

compliance enforcement across environments leads to operational risk.

Observability Silos: Metrics, logs, and traces are fragmented, impeding

troubleshooting and holistic visibility.

Steep Learning Curve: Existing platforms are not optimized for

simplicity or stateful workloads, resulting in slow onboarding and high

operational overhead.

Operational Overhead: Routine tasks are time-consuming, error-prone,

and difficult to scale.

Market Context: The global Kubernetes management market ($1.5B+ in

2023) is rapidly growing, with a significant segment focused on

hybrid/multi-cloud and stateful application management, especially in

regulated industries (finance, healthcare, telecom) and SaaS providers.

3. Solution Overview

ClusterMaster SaaS Hub provides a unified, simplified, and illustrative

interface for Kubernetes operations, optimized for stateful workloads across

on-premises and major cloud providers. Key solution pillars:

Cluster Dashboard: A clear, actionable overview of all managed

clusters, health status, key performance metrics, and critical alerts—

immediately visible upon login.

Simplified Cluster Lifecycle Management: Streamlined, guided

workflows for deploying, scaling, and upgrading stateful applications

across hybrid and multi-cloud environments.

Unified Observability: Aggregated metrics, logs, and traces from all

environments, enabling holistic monitoring and troubleshooting.

Centralized Governance: Policy management and compliance

enforcement across all clusters and environments.

Illustrative UX: Intuitive, step-by-step workflows with visual cues,

reducing the Kubernetes learning curve and enhancing productivity.

Unique Value: Deep support for stateful workloads, cross-cloud

orchestration, and a focus on operational governance—delivered via an

intuitive, illustrative experience that differentiates from Rancher, OpenShift,

and Tanzu.

4. Stakeholder Analysis

Stakeholder Role/Responsibility Influence/Interest

Platform

Engineering

Teams

Primary users; manage

clusters, deploy/upgrade

apps

High influence, high

interest

Site Reliability

Engineers

Monitor, troubleshoot,

and optimize stateful

workloads

High influence, high

interest

DevOps

Professionals

Integrate CI/CD,

automate deployments,

enforce policies

Medium influence,

high interest

IT Security &

Compliance

Ensure governance,

compliance, and security

High influence,

medium interest

Cloud

Architects

Oversee hybrid/multi-

cloud strategy

Medium influence,

medium interest

Enterprise

Executives

Approve budgets, track

ROI, ensure business

alignment

High influence,

medium interest

SaaS Providers
Integrate platform into

service offerings

Medium influence,

medium interest

5. User Personas

Persona 1: Priya Sharma – Platform Engineer

Demographics: Age 32, Female, Bangalore, India; works at a global

telecom (10,000+ employees)

Goals: Efficiently manage 50+ Kubernetes clusters across AWS, Azure,

and on-prem; reduce manual intervention in upgrades and scaling; ensure

uptime for mission-critical stateful workloads (databases, Kafka)

Pain Points: Fragmented tools, complex upgrade paths, lack of unified

governance, high operational overhead

Use Cases: Deploying new stateful DB clusters, orchestrating rolling

upgrades, enforcing policies across environments

Technology Comfort: Advanced Kubernetes, scripting, CI/CD; prefers

intuitive UIs over CLI for routine ops

Behavioral Patterns: Works in sprints, values automation, collaborates

with SREs and security

Persona 2: Alex Kim – Site Reliability Engineer (SRE)

Demographics: Age 40, Male, San Francisco, USA; works at a fintech

(3,000 employees)

Goals: Monitor health and performance of stateful workloads (Postgres,

Redis), quickly troubleshoot incidents, reduce MTTR

Pain Points: Siloed observability, slow root cause analysis, inconsistent

alerting, lack of cross-cluster visibility

Use Cases: Responding to critical alerts, investigating performance

degradation, correlating logs/metrics/traces

Technology Comfort: Expert in monitoring/observability tools

(Prometheus, Grafana), scripting, automation

Behavioral Patterns: On-call rotations, proactive monitoring, documents

incident postmortems

Persona 3: Maria Lopez – DevOps Lead

Demographics: Age 36, Female, Madrid, Spain; SaaS provider (1,200

employees)

Goals: Standardize application deployment pipelines, automate

compliance checks, onboard new teams quickly

Pain Points: Inconsistent deployment workflows, manual policy

enforcement, slow onboarding

Use Cases: Integrating CI/CD with cluster management, automating

policy enforcement, training new hires

Technology Comfort: Advanced CI/CD, IaC (Terraform), Kubernetes

basics, prefers visual workflow builders

Behavioral Patterns: Champions best practices, coordinates with

platform and security teams

Persona 4: John Miller – IT Security & Compliance Officer

Demographics: Age 45, Male, London, UK; healthcare enterprise (5,000

employees)

Goals: Ensure regulatory compliance (GDPR, HIPAA), audit cluster

configurations, enforce security policies

Pain Points: Lack of centralized policy management, manual audits,

fragmented compliance reporting

Use Cases: Reviewing policy violations, generating compliance reports,

enforcing RBAC and encryption

Technology Comfort: Intermediate Kubernetes, compliance tools,

prefers dashboards and reports

Behavioral Patterns: Periodic audits, risk assessments, collaborates

with platform and legal teams

6. Technical Requirements

Architecture Alignment:

Frontend: React 18.x (as specified in Architecture)

Backend: Node.js 18.x with Express (per Architecture)

Infrastructure: Kubernetes (managed clusters), Docker containers,

Terraform for IaC

Security: OAuth2.0, SAML SSO, RBAC, end-to-end encryption (TLS 1.2+)

Integration: RESTful APIs, Prometheus, Grafana, third-party cloud APIs

(AWS, GCP, Azure)

Database: PostgreSQL 15+ (schema defined in Architecture)

Observability: Prometheus, Loki, Jaeger (as per Architecture)

Configuration: Centralized config via ConfigMaps/Secrets,

environment-based overrides

Performance: Support 10,000+ concurrent users, <2s dashboard load

time

Design Patterns: Microservices, CQRS, event-driven architecture (Kafka

for event bus)

Component Architecture:

Services: ClusterService, AppDeploymentService,

ObservabilityService, PolicyService, AuthService

Modules: Dashboard, Cluster Management, Application Lifecycle,

Observability, Governance

7. Non-Functional Requirements

Attribute Requirement

Performance
Dashboard loads in <2s; API response time <500ms

for 95% of requests

Scalability
Support 10,000+ concurrent users and 1,000+

managed clusters

Reliability
99.95% uptime SLA; automated failover for core

services

Availability
Multi-AZ deployment; blue-green/rolling upgrades;

self-healing containers

Security
End-to-end encryption (TLS 1.2+), RBAC, SSO, audit

logs

Privacy
Data minimization, user consent, GDPR/CCPA

compliance

Usability
Intuitive, illustrative workflows; <1hr onboarding for

new users

Accessibility
WCAG 2.1 AA compliance; keyboard navigation,

screen reader support

Compliance
GDPR, CCPA, HIPAA (for healthcare), ISO 27001, SOC

2 Type II

8. Success Metrics & KPIs

Metric Target/Goal
Measurement

Method

Cluster

Management

Efficiency

30% reduction in time

spent on cluster ops

User surveys,

time tracking

Application

Deployment

Success Rate

99%+ successful

deployments/upgrades

Deployment

logs, error rates

MTTR (Mean

Time to

Resolution)

40% reduction in incident

MTTR

Incident

tracking, alerting

data

User Onboarding

Time

<1 hour for new users to

complete onboarding

Onboarding

analytics

Platform

Adoption

80%+ of target teams

onboarded in 6 months

User registration,

usage metrics

Uptime 99.95%+ uptime SLA
Monitoring,

uptime reports

Compliance

Violations

0 critical violations in

production

Audit logs,

compliance

reports

User Satisfaction

(NPS)
NPS > 60 within 6 months NPS surveys

9. Risks & Mitigation Strategies

Risk Mitigation/Contingency Plan

Integration complexity

(multi-cloud, hybrid)

Use abstraction layers, extensive

integration testing

Risk Mitigation/Contingency Plan

State management for

upgrades

Automated backup/rollback, canary

deployments

Security breaches
Regular security audits, penetration

testing, rapid patching

Compliance failures
Automated policy enforcement, periodic

audits

Performance bottlenecks
Load testing, auto-scaling, performance

monitoring

User adoption slow
In-app tutorials, onboarding guides,

responsive support

Vendor lock-in
Support open standards, export/import

APIs

10. Assumptions

Target customers have 500+ employees and operate Kubernetes

clusters at scale.

Users are familiar with Kubernetes concepts but seek simplified,

illustrative workflows.

All managed clusters are accessible via secure APIs (cloud or on-prem).

Enterprises require compliance with GDPR, CCPA, HIPAA, and ISO

27001.

Platform will integrate with existing identity providers (SSO, SAML).

Observability data (metrics, logs, traces) is accessible via

Prometheus/Loki/Jaeger.

Sufficient budget and resources are allocated for enterprise-grade

SaaS operations.

Cloud provider APIs (AWS, GCP, Azure) are stable and well-

documented.

Users expect <2s dashboard load time and high reliability.

11. Compliance & Regulatory Requirements

GDPR: Data minimization, consent management, right to

access/deletion, privacy by design, breach notification (see GDPR

Compliance Knowledge)

CCPA: Right to know/delete/opt-out, privacy notices, access requests

(see CCPA Compliance Knowledge)

HIPAA: Data encryption, audit trails, access controls (for healthcare

customers)

ISO 27001: ISMS, risk management, security controls, regular audits

SOC 2 Type II: Security, availability, confidentiality controls

WCAG 2.1 AA: Accessibility for all users, including screen reader and

keyboard navigation

ADA: Digital accessibility (see ADA Compliance Knowledge)

12. Security & Privacy Requirements

Authentication: OAuth2.0, SAML SSO, MFA (multi-factor

authentication)

Authorization: RBAC (role-based access control), least privilege

principle

Encryption: End-to-end encryption (TLS 1.2+), encrypted data at rest

(AES-256)

Audit Logging: Immutable, centralized logs for all critical actions

Input Validation: Strict server-side and client-side validation (see Input

Validation Best Practices)

Data Protection: Data minimization, access controls, regular security

reviews

Incident Response: Breach notification procedures, rapid remediation

Privacy: User consent management, data subject rights (GDPR/CCPA)

13. Integration Requirements

Cloud Providers: AWS (EKS), GCP (GKE), Azure (AKS), on-prem

Kubernetes clusters

Observability Tools: Prometheus (metrics), Loki (logs), Jaeger (tracing)

CI/CD Pipelines: Integration with GitHub Actions, GitLab CI, Jenkins (via

webhooks/APIs)

Identity Providers: SAML 2.0, OAuth2.0, LDAP

Policy Engines: Open Policy Agent (OPA) for governance

Notification Systems: Slack, Microsoft Teams, email (SMTP)

Export/Import: Support for standard Kubernetes manifests (YAML),

Helm charts

14. Data Architecture

Architecture Alignment:

Database: PostgreSQL 15+

Schema (from Architecture):

Tables: clusters, applications, deployments, users, policies, alerts,

metrics, logs, traces, audit_logs

Relationships:

clusters (1) ↔ (N) applications

applications (1) ↔ (N) deployments

users (1) ↔ (N) audit_logs

clusters (1) ↔ (N) metrics , logs , traces

policies (N) ↔ (N) clusters

Indexes: On cluster_id, user_id, application_id, timestamp fields

Storage Strategies:

Operational Data: PostgreSQL (structured)

Observability Data: Time-series DB (Prometheus), log storage (Loki),

trace storage (Jaeger)

Backups: Automated daily backups, point-in-time recovery

Data Processing:

ETL pipelines for aggregating metrics/logs/traces

Real-time event processing for alerts (Kafka event bus)

Data Flow:

Ingest → Process → Store → Visualize (dashboard, APIs)

ER Diagram: See Architecture documentation for full ERD

15. API Specifications

API Versioning: /api/v1/ (as per Architecture)

Feature-to-Endpoint Mapping

Feature Endpoints (HTTP Method, Path)

User Authentication

POST /api/v1/auth/login, POST

/api/v1/auth/logout, POST

/api/v1/auth/refresh, POST

/api/v1/auth/mfa

User Management

GET /api/v1/users, POST /api/v1/users,

GET /api/v1/users/:id, PUT

/api/v1/users/:id, DELETE /api/v1/users/:id

Cluster Dashboard

GET /api/v1/clusters, GET

/api/v1/clusters/:id, GET

/api/v1/clusters/:id/health, GET

/api/v1/clusters/:id/metrics, GET

/api/v1/clusters/:id/alerts

Cluster Lifecycle

Management

POST /api/v1/clusters, PUT

/api/v1/clusters/:id, DELETE

/api/v1/clusters/:id, POST

/api/v1/clusters/:id/upgrade, POST

/api/v1/clusters/:id/scale

Application

Deployment/Upgrade

GET /api/v1/applications, POST

/api/v1/applications, GET

/api/v1/applications/:id, PUT

/api/v1/applications/:id, POST

/api/v1/applications/:id/deploy, POST

/api/v1/applications/:id/upgrade

Feature Endpoints (HTTP Method, Path)

Observability

(Metrics/Logs/Traces)

GET /api/v1/metrics, GET /api/v1/logs, GET

/api/v1/traces, GET

/api/v1/clusters/:id/metrics, GET

/api/v1/applications/:id/logs

Governance/Policy

Management

GET /api/v1/policies, POST /api/v1/policies,

GET /api/v1/policies/:id, PUT

/api/v1/policies/:id, DELETE

/api/v1/policies/:id, POST

/api/v1/policies/:id/enforce

Alerts & Notifications

GET /api/v1/alerts, POST

/api/v1/alerts/ack, POST

/api/v1/alerts/silence, POST

/api/v1/notifications

Audit Logs
GET /api/v1/audit-logs, GET /api/v1/audit-

logs/:id

Third-Party

Integrations

POST /api/v1/integrations, GET

/api/v1/integrations, DELETE

/api/v1/integrations/:id

Example Endpoint Definitions

POST /api/v1/clusters

Request:
{
 "name": "prod-eks-cluster",
 "provider": "aws",
 "region": "us-west-2",
 "k8s_version": "1.27",
 "credentials": { "access_key": "...", "secret_key": "..." }
}
Response:
{
 "id": "cluster_123",
 "status": "provisioning"
}

GET /api/v1/clusters/:id/health

Response:
{
 "cluster_id": "cluster_123",
 "status": "healthy",
 "last_checked": "2024-06-01T12:00:00Z",
 "issues": []
}

POST /api/v1/applications/:id/deploy

Request:
{
 "cluster_id": "cluster_123",
 "version": "v2.0.1",
 "config_overrides": { "replicas": 3 }
}
Response:
{
 "deployment_id": "deploy_456",
 "status": "in_progress"
}

GET /api/v1/metrics

Response:
[
 {
 "resource": "cluster",
 "resource_id": "cluster_123",
 "metric": "cpu_usage",
 "value": 0.65,
 "timestamp": "2024-06-01T12:00:00Z"
 },
 ...
]

Authentication & Authorization

All endpoints require OAuth2.0 Bearer token.

RBAC enforced on all endpoints.

Rate limiting: 1000 requests/min/user.

Error handling: Standardized error codes/messages.

All endpoints, request/response schemas, and authentication methods are

aligned with the Architecture's API design.

16. Testing Strategy

Unit Testing: 80%+ code coverage for backend (Jest, Mocha), frontend

(Jest, React Testing Library)

Integration Testing: API contract tests, service-to-service

communication, database integration

End-to-End (E2E) Testing: Cypress for UI flows, deployment/upgrade

scenarios

Performance Testing: Load testing (k6, JMeter) for 10,000+ concurrent

users

Security Testing: Automated vulnerability scans (OWASP ZAP),

penetration testing, dependency scanning

Acceptance Criteria: All critical user flows, error handling, and

compliance requirements must pass before release

17. Deployment Strategy

Phased Rollout: Staged environments (dev → staging → prod)

Blue-Green Deployments: Zero-downtime upgrades for core services

Rollback Procedures: Automated rollback on deployment failure,

database snapshot restore

Containerization: Multi-stage Docker builds, non-root containers (see

Containerization Best Practices)

Infrastructure as Code: Terraform-managed environments, version-

controlled deployments

Disaster Recovery: Automated daily backups, documented recovery

runbooks

18. Monitoring & Observability

Metrics: Cluster health, API latency, error rates, resource utilization

(Prometheus)

Dashboards: Grafana dashboards for clusters, applications, and

platform health

Alerts: Configurable thresholds for critical metrics, integrated with

Slack/Teams/email

Logging: Centralized, structured logs (Loki), 30-day retention, no

sensitive data (see Backend Logging Best Practices)

Tracing: Distributed tracing for all API calls (Jaeger)

Audit Trails: Immutable logs for all critical actions

19. Timeline & Phases

Phase Deliverables Milestones/Dependencies

Phase 1:

Discovery

Requirements,

Architecture,

Prototypes

Stakeholder alignment, PoC

Phase 2:

MVP Build

Dashboard, Cluster

Mgmt, Observability

Core API, UI, cloud

integrations

Phase 3:

Governance

Policy engine,

compliance, audit

logs

OPA integration,

compliance testing

Phase 4:

Scale & UX

Multi-cloud,

advanced

workflows, UX

polish

Load testing, onboarding,

docs

Phase 5: GA

Launch

Full release, support,

SLAs

Final UAT, security audit,

go-live

20. Resource Requirements

Team Composition:

Product Manager (1)

Frontend Engineers (2-3, React)

Backend Engineers (3-4, Node.js, Kubernetes)

DevOps/SRE (2, cloud/K8s experts)

QA Engineers (2, automation/E2E)

UX/UI Designer (1, illustrative workflows)

Security/Compliance Specialist (1)

Skills Needed:

Kubernetes, cloud APIs, microservices, observability, security,

compliance, SaaS ops

Budget Considerations:

Cloud infrastructure, third-party integrations, compliance

certifications, support

21. Change Management Plan

User Adoption: In-app tutorials, onboarding guides, contextual help,

responsive support

Training: Webinars, documentation, knowledge base, hands-on labs

Communication: Regular release notes, stakeholder updates, feedback

channels

Feedback Loops: In-app surveys, user interviews, NPS tracking

Continuous Improvement: Agile iteration, backlog grooming, roadmap

transparency

Note: User stories will be generated in the next phase based on this PRD.

This PRD is fully personalized to ClusterMaster SaaS Hub, referencing all

specific requirements, user flows, features, and success metrics as provided.

All technical and compliance requirements are aligned with enterprise best

practices and the referenced architecture.

