Product Requirements Document (PRD):
ClusterMaster SaaS Hub

1. Executive Summary

ClusterMaster SaaS Hub is an enterprise-grade, SaaS-based Kubernetes
operations platform designed to simplify, illustrate, and unify the
management of stateful applications across hybrid and multi-cloud
environments (on-premise, AWS, GCP, Azure). Targeted at platform
engineering teams, SREs, and DevOps professionals in mid-to-large
enterprises (500+ employees), ClusterMaster addresses the operational
complexity, fragmented tooling, and governance gaps that plague
I[Kubernetes at scale. The platform delivers a single pane of glass for cluster
lifecycle management, application deployment/upgrades, observability, and
operational governance, with a unique focus on stateful workloads and
intuitive, illustrative workflows. The primary objectives are to reduce
operational overhead, improve reliability, accelerate onboarding, and enforce

unified governance across environments.

2. Problem Statement

Enterprises running mission-critical, stateful workloads (databases,
message queues, persistent storage) on Kubernetes across hybrid and

multi-cloud environments face significant challenges:

+ Complexity & Fragmentation: Managing cluster lifecycle, upgrades, and
stateful application deployments is complex, requiring expertise with
disparate tools (Helm, ArgoCD, Prometheus, custom scripts) or cloud-
specific solutions (EKS, GKE, AKS).

* Governance Gaps: Lack of centralized policy management and
compliance enforcement across environments leads to operational risk.

» Observability Silos: Metrics, logs, and traces are fragmented, impeding
troubleshooting and holistic visibility.

o Steep Learning Curve: Existing platforms are not optimized for
simplicity or stateful worRloads, resulting in slow onboarding and high
operational overhead.

e Operational Overhead: Routine tasks are time-consuming, error-prone,

and difficult to scale.

Market Context: The global IKubernetes management market ($1.5B+ in
2023) is rapidly growing, with a significant segment focused on
hybrid/multi-cloud and stateful application management, especially in

regulated industries (finance, healthcare, telecom) and Saa$S providers.

3. Solution Overview

ClusterMaster SaaS Hub provides a unified, simplified, and illustrative

interface for Kubernetes operations, optimized for stateful workRloads across

on-premises and major cloud providers. Key solution pillars:

¢ Cluster Dashboard: A clear, actionable overview of all managed
clusters, health status, Rey performance metrics, and critical alerts—
immediately visible upon login.

» Simplified Cluster Lifecycle Management: Streamlined, guided
worRflows for deploying, scaling, and upgrading stateful applications
across hybrid and multi-cloud environments.

» Unified Observability: Aggregated metrics, logs, and traces from all
environments, enabling holistic monitoring and troubleshooting.

¢ Centralized Governance: Policy management and compliance
enforcement across all clusters and environments.

o lllustrative UX: Intuitive, step-by-step workflows with visual cues,

reducing the Kubernetes learning curve and enhancing productivity.

Unique Value: Deep support for stateful workloads, cross-cloud

orchestration, and a focus on operational governance—delivered via an

intuitive, illustrative experience that differentiates from Rancher, OpenShift,

and Tanzu.

4. StaReholder Analysis

Stakeholder

Platform
Engineering

interest
Teams apps
) S Monitor, troubleshoot, o]
Site Reliability L High influence, high
) and optimize stateful)

Engineers interest

worRloads

Integrate CI/CD, . _
DevOps Medium influence,

Professionals

Role/Responsibility

Primary users; manage
clusters, deploy/upgrade

automate deployments,
enforce policies

Influence/Interest

High influence, high

high interest

IT Security & Ensure governance, High influence,
Compliance compliance, and security medium interest
Cloud Oversee hybrid/multi- Medium influence,
Architects cloud strategy medium interest

) Approve budgets, track o
Enterprise . High influence,

) RO, ensure business)]
Executives medium interest

Saas Providers

alignment

Integrate platform into
service offerings

Medium influence,
medium interest

5. User Personas

Persona 1: Priya Sharma - Platform Engineer

 Demographics: Age 32, Female, Bangalore, India; works at a global
telecom (10,000+ employees)

e Goals: Efficiently manage 50+ Kubernetes clusters across AWS, Azure,
and on-prem; reduce manual intervention in upgrades and scaling; ensure
uptime for mission-critical stateful workRloads (databases, IKafRka)

¢ Pain Points: Fragmented tools, complex upgrade paths, lack of unified
governance, high operational overhead

o Use Cases: Deploying new stateful DB clusters, orchestrating rolling
upgrades, enforcing policies across environments

o Technology Comfort: Advanced [Kubernetes, scripting, CI/CD; prefers
intuitive Uls over CLI for routine ops

¢ Behavioral Patterns: \Works in sprints, values automation, collaborates
with SREs and security

Persona 2: Alex IKim - Site Reliability Engineer (SRE)

o Demographics: Age 40, Male, San Francisco, USA; works at a fintech
(3,000 employees)

¢ Goals: Monitor health and performance of stateful worRloads (Postgres,
Redis), quicRly troubleshoot incidents, reduce MTTR

¢ Pain Points: Siloed observability, slow root cause analysis, inconsistent
alerting, lacR of cross-cluster visibility

e Use Cases: Responding to critical alerts, investigating performance
degradation, correlating logs/metrics/traces

¢ Technology Comfort: Expert in monitoring/observability tools
(Prometheus, Grafana), scripting, automation

¢ Behavioral Patterns: On-call rotations, proactive monitoring, documents
incident postmortems

Persona 3: Maria Lopez — DevOps Lead

¢ Demographics: Age 36, Female, Madrid, Spain; SaaS provider (1,200
employees)
¢ Goals: Standardize application deployment pipelines, automate

compliance checRks, onboard new teams quicRly

¢ Pain Points: Inconsistent deployment workflows, manual policy
enforcement, slow onboarding

e Use Cases: Integrating CI/CD with cluster management, automating
policy enforcement, training new hires

¢ Technology Comfort: Advanced CI/CD, |aC (Terraform), IKubernetes
basics, prefers visual workflow builders

¢ Behavioral Patterns: Champions best practices, coordinates with
platform and security teams

Persona 4: John Miller - IT Security & Compliance Officer

 Demographics: Age 45, Male, London, UI{; healthcare enterprise (5,000
employees)

e Goals: Ensure regulatory compliance (GDPR, HIPAA), audit cluster
configurations, enforce security policies

e Pain Points: Lack of centralized policy management, manual audits,
fragmented compliance reporting

e Use Cases: Reviewing policy violations, generating compliance reports,
enforcing RBAC and encryption

¢ Technology Comfort: Intermediate [Kubernetes, compliance tools,
prefers dashboards and reports

o Behavioral Patterns: Periodic audits, risk assessments, collaborates
with platform and legal teams

6. Technical Requirements

Architecture Alignment:

e Frontend: React 18.x (as specified in Architecture)
e Backend: Node.js 18.x with Express (per Architecture)

e Infrastructure: [Kubernetes (managed clusters), Docker containers,
Terraform for [aC

e Security: OAuth2.0, SAML SS0O, RBAC, end-to-end encryption (TLS 1.2+)

¢ Integration: RESTful APIs, Prometheus, Grafana, third-party cloud APls
(AWS, GCP, Azure)

o Database: PostgreSQL 15+ (schema defined in Architecture)
¢ Observability: Prometheus, LoRi, Jaeger (as per Architecture)

o Configuration: Centralized config via ConfigMaps/Secrets,
environment-based overrides

e Performance: Support 10,000+ concurrent users, <2s dashboard load
time

o Design Patterns: Microservices, CQRS, event-driven architecture (IKafka
for event bus)

o Component Architecture:

e Services: ClusterService, AppDeploymentService,
ObservabilityService, PolicyService, AuthService

¢ Modules: Dashboard, Cluster Management, Application Lifecycle,
Observability, Governance

7. Non-Functional Requirements

Attribute Requirement

Dashboard loads in <2s; API response time <500ms

Performance
for 95% of requests
. Support 10,000+ concurrent users and 1,000+
Scalability
managed clusters
o 99.95% uptime SLA; automated failover for core
Reliability]
services
I Multi-AZ deployment; blue-green/rolling upgrades;
Availability])
self-healing containers
. End-to-end encryption (TLS 1.2+), RBAC, SSO, audit
Security
logs
] Data minimization, user consent, GDPR/CCPA
Privacy _
compliance
N Intuitive, illustrative workflows; <lhr onboarding for
Usability
new users
o WCAG 2.1 AA compliance; Reyboard navigation,
Accessibility
screen reader support
_ GDPR, CCPA, HIPAA (for healthcare), ISO 27001, SOC
Compliance

2 Type ll

Metric

Cluster
Management
Efficiency

Application
Deployment
Success Rate

MTTR (Mean
Time to
Resolution)

User Onboarding
Time

Platform
Adoption

Uptime

Compliance
Violations

User Satisfaction
(NPS)

8. Success Metrics & KPIs

Target/Goal

30% reduction in time
spent on cluster ops

99%+ successful
deployments/upgrades

40% reduction in incident
MTTR

<1 hour for new users to
complete onboarding

80%+ of target teams
onboarded in 6 months

99.95%+ uptime SLA

O critical violations in
production

NPS > 60 within 6 months

9. Risks & Mitigation Strategies

Risk

Integration complexity
(multi-cloud, hybrid)

Measurement
Method

User surveys,
time tracRing

Deployment
logs, error rates

Incident
tracking, alerting
data

Onboarding
analytics

User registration,
usage metrics

Monitoring,
uptime reports

Audit logs,
compliance
reports

NPS surveys

Mitigation/Contingency Plan

Use abstraction layers, extensive

integration testing

Risk Mitigation/Contingency Plan

State management for Automated backup/rollbacR, canary
upgrades deployments

. Regular security audits, penetration
Security breaches]]]
testing, rapid patching

_ . Automated policy enforcement, periodic
Compliance failures dit
audits

Load testing, auto-scaling, performance
Performance bottlenecks o
monitoring

. In-app tutorials, onboarding guides,
User adoption slow)
responsive support

Support open standards, export/import
APls

Vendor lock-in

10. Assumptions

e Target customers have 500+ employees and operate Kubernetes
clusters at scale.

e Users are familiar with IKubernetes concepts but seekR simplified,
illustrative workflows.

¢ All managed clusters are accessible via secure APls (cloud or on-prem).

e Enterprises require compliance with GDPR, CCPA, HIPAA, and ISO
27001.

e Platform will integrate with existing identity providers (5SSO, SAML).

e Observability data (metrics, logs, traces) is accessible via
Prometheus/LoRi/Jaeger.

e Sufficient budget and resources are allocated for enterprise-grade
SaaS operations.

e Cloud provider APls (AWS, GCPP, Azure) are stable and well-
documented.

e Users expect <2s dashboard load time and high reliability.

11. Compliance & Regulatory Requirements

¢ GDPR: Data minimization, consent management, right to
access/deletion, privacy by design, breach notification (see GDPR
Compliance Knowledge)

e CCPA: Right to Rnow/delete/opt-out, privacy notices, access requests
(see CCPA Compliance Knowledge)

o HIPAA: Data encryption, audit trails, access controls (for healthcare
customers)

e IS0 27001: ISMS, risk management, security controls, regular audits
e SOC 2 Type ll: Security, availability, confidentiality controls

o WCAG 2.1 AA: Accessibility for all users, including screen reader and
Reyboard navigation

e ADA: Digital accessibility (see ADA Compliance IKnowledge)

12. Security & Privacy Requirements

e Authentication: OAuth2.0, SAML S50, MFA (multi-factor
authentication)

e Authorization: RBAC (role-based access control), least privilege
principle

¢ Encryption: End-to-end encryption (TLS 1.2+), encrypted data at rest
(AES-256)

e Audit Logging: Immutable, centralized logs for all critical actions

¢ Input Validation: Strict server-side and client-side validation (see Input
Validation Best Practices)

o Data Protection: Data minimization, access controls, regular security
reviews

¢ Incident Response: Breach notification procedures, rapid remediation

¢ Privacy: User consent management, data subject rights (GDPR/CCPA)

13. Integration Requirements

e Cloud Providers: AWS (EKS), GCP (GKE), Azure (AIKS), on-prem
Kubernetes clusters

¢ Observability Tools: Prometheus (metrics), LoRi (logs), Jaeger (tracing)

o CI/CD Pipelines: Integration with GitHub Actions, GitLab Cl, JenRins (via
webhooRs/APls)

¢ Identity Providers: SAML 2.0, OAuth2.0, LDAP
» Policy Engines: Open Policy Agent (OPA) for governance
* Notification Systems: Slack, Microsoft Teams, email (SMTP)

o Export/Import: Support for standard IKubernetes manifests (YAML),
Helm charts

14. Data Architecture

Architecture Alignment:

o Database: PostgreSQL 15+

¢ Schema (from Architecture):
o Tables: clusters, applications, deployments, users, policies, alerts,
metrics, logs, traces, audit_logs

¢ Relationships:

e clusters (1) <> (N) applications
e applications (1) <> (N) deployments
e users (I) <> (N) audit logs
e clusters (I) <> (N) metrics , logs , traces
e policies (N)<«> (N) clusters
e Indexes: On cluster_id, user_id, application_id, timestamp fields
e Storage Strategies:

e Operational Data: PostgreSQL (structured)

¢ Observability Data: Time-series DB (Prometheus), log storage (LoRi),
trace storage (Jaeger)

¢ Backups: Automated daily bacRups, point-in-time recovery
+ Data Processing:
e ETL pipelines for aggregating metrics/logs/traces

e Real-time event processing for alerts (IKafkRa event bus)

o Data Flow:
¢ Ingest — Process — Store — Visualize (dashboard, APIs)

o ER Diagram: See Architecture documentation for full ERD

15. APl Specifications

APl Versioning: /api/vl/ (as per Architecture)

Feature-to-Endpoint Mapping

Feature Endpoints (HTTP Method, Path)

POST /api/vi/auth/login, POST
/api/vl/auth/logout, POST
/api/vl/auth/refresh, POST
/api/vl/auth/mfa

User Authentication

GET /api/vl/users, POST /api/vl/users,
User Management GET /api/vl/users/:id, PUT
/api/vl/users/:id, DELETE /api/vl/users/:id

GET /api/vl/clusters, GET
/api/vl/clusters/:id, GET

Cluster Dashboard /api/vl/clusters/:id/health, GET
/api/vl/clusters/:id/metrics, GET
/api/vl/clusters/:id/alerts

POST /api/vl/clusters, PUT
/api/vl/clusters/:id, DELETE

Cluster Lifecycle _ _
/api/vl/clusters/:id, POST

Management _ :
/api/vl/clusters/:id/upgrade, POST
/api/vl/clusters/:id/scale
GET /api/vl/applications, POST
/api/vl/applications, GET
Application /api/vl/applications/:id, PUT

Deployment/Upgrade /api/vl/applications/:id, POST
/api/vl/applications/:id/deploy, POST
/api/vl/applications/:id/upgrade

Feature

Observability
(Metrics/Logs/Traces)

Governance/Policy
Management

Alerts & Notifications

Audit Logs

Third-Party
Integrations

Endpoints (HTTP Method, Path)

GET /api/vl/metrics, GET /api/vl/logs, GET
/api/vl/traces, GET
/api/vl/clusters/:id/metrics, GET
/api/vl/applications/:id/logs

GET /api/vl/policies, POST /api/vi/policies,
GET /api/vl/policies/:id, PUT
/api/vl/policies/:id, DELETE
/api/vl/policies/:id, POST
/api/vl/policies/:id/enforce

GET /api/vl/alerts, POST
/api/vl/alerts/acR, POST
/api/vl/alerts/silence, POST
/api/vl/notifications

GET /api/vl/audit-logs, GET /api/vl/audit-
logs/:id

POST /api/vl/integrations, GET
/api/vl/integrations, DELETE
/api/vl/integrations/:id

Example Endpoint Definitions

POST /api/vl/clusters

Request:

{

"name": "prod-eks-cluster",

"provider": "aws",
"region": "us-west-2",
"k8s_version": "1.27",

"credentials": { "access_key":

¥

Response:

{
"id": "cluster_123",

"status": "provisioning"

¥

"', "secret_key":

GET /api/vl/clusters/:id/health

Response:

{

"cluster_id": "cluster_123",

"status": "healthy",
"last_checked": '"2024-06-01T12:00:007",
"issues": []

POST /api/vl/applications/:id/deploy

Request:

{
"cluster_id": "cluster_123",
"version": "v2.0.1",
"config_overrides": { "replicas": 3 }

b

Response:

{
"deployment_id": "deploy_456",
"status": "in_progress"

}

GET /api/vl/metrics

Response:
[

"resource": "cluster",
"resource_id": "cluster_123",

"metric": "cpu_usage",

"value": 0.65,

"timestamp": '"2024-06-01T12:00:00Z"
H

Authentication & Authorization
¢ All endpoints require OAuth2.0 Bearer tokRen.
e RBAC enforced on all endpoints.
¢ Rate limiting: 1000 requests/min/user.

e Error handling: Standardized error codes/messages.

All endpoints, request/response schemas, and authentication methods are
aligned with the Architecture's APl design.

16. Testing Strategy

e Unit Testing: 80%+ code coverage for backend (Jest, Mocha), frontend
(Jest, React Testing Library)

¢ Integration Testing: APl contract tests, service-to-service
communication, database integration

e End-to-End (E2E) Testing: Cypress for Ul flows, deployment/upgrade
scenarios

o Performance Testing: Load testing (R6, IMeter) for 10,000+ concurrent
users

e Security Testing: Automated vulnerability scans (OWASP ZAP),
penetration testing, dependency scanning

e Acceptance Criteria: All critical user flows, error handling, and
compliance requirements must pass before release

17. Deployment Strategy

¢ Phased Rollout: Staged environments (dev — staging — prod)
¢ Blue-Green Deployments: Zero-downtime upgrades for core services

¢ Rollback Procedures: Automated rollback on deployment failure,
database snapshot restore

¢ Containerization: Multi-stage DocRer builds, non-root containers (see
Containerization Best Practices)

¢ Infrastructure as Code: Terraform-managed environments, version-
controlled deployments

¢ Disaster Recovery: Automated daily backups, documented recovery
runbooRs

18. Monitoring & Observability

e Metrics: Cluster health, API latency, error rates, resource utilization
(Prometheus)

o Dashboards: Grafana dashboards for clusters, applications, and

platform health

o Alerts: Configurable thresholds for critical metrics, integrated with

SlackR/Teams/email

¢ Logging: Centralized, structured logs (LoRi), 30-day retention, no

sensitive data (see Backend Logging Best Practices)

e Tracing: Distributed tracing for all API calls (Jaeger)

e Audit Trails: Immutable logs for all critical actions

19. Timeline & Phases

Phase

Phase I:
Discovery

Phase 2:
MVP Build

Phase 3:
Governance

Phase 4:
Scale 6 UX

Phase 5: GA
Launch

Deliverables

Requirements,
Architecture,
Prototypes

Dashboard, Cluster
Mgmt, Observability

Policy engine,
compliance, audit
logs

Multi-cloud,
advanced
workflows, UX
polish

Full release, support,
SLAs

20. Resource Requirements

e Team Composition:

e Product Manager (1)

¢ Frontend Engineers (2-3, React)

Milestones/Dependencies

Stakeholder alignment, PoC

Core API, Ul, cloud
integrations

OPA integration,
compliance testing

Load testing, onboarding,
docs

Final UAT, security audit,
go-live

e [BacRend Engineers (3-4, Node.js, Kubernetes)
e DevOps/SRE (2, cloud/IK8s experts)

e QA Engineers (2, automation/E2E)

o UX/UI Designer (1, illustrative workRflows)

e Security/Compliance Specialist (1)

¢ SRills Needed:
¢ [Kubernetes, cloud APIs, microservices, observability, security,
compliance, SaaS ops

¢ Budget Considerations:
e Cloud infrastructure, third-party integrations, compliance
certifications, support

21. Change Management Plan

o User Adoption: In-app tutorials, onboarding guides, contextual help,
responsive support

¢ Training: Webinars, documentation, Rnowledge base, hands-on labs

o Communication: Regular release notes, stakeholder updates, feedback
channels

* FeedbacR Loops: In-app surveys, user interviews, NPPS tracking

e Continuous Improvement: Agile iteration, backlog grooming, roadmap
transparency

Note: User stories will be generated in the next phase based on this PRD.

This PRD is fully personalized to ClusterMaster SaasS Hub, referencing all
specific requirements, user flows, features, and success metrics as provided.
All technical and compliance requirements are aligned with enterprise best

practices and the referenced architecture.

